import streamlit as st from transformers import pipeline from PIL import Image model_path = "abhisheky127/FeedbackSummarizerEnterpret" summarizer = pipeline("summarization", model=model_path) def postprocess(prediction, input): if len(input.split(" "))<5: return("None") else: return(prediction.split('.')[0]+".") st.title("Feedback Summarizer: Enterpret") st.markdown( """ #### Summarize reviews/feedbacks with fine-tuned T5-small language Model > *powered by Hugging Face T5, Streamlit* """ ) st.image("Screenshot 2023-06-25 at 11.49.26 PM.png") st.markdown("----") product = st.text_input('Product', '') type = st.text_input('Record Type', '') text = st.text_area('Text to Summarize', '''''') if st.button('Summarize'): if len(product) and len(type) and len(text): with st.spinner( "Summarizing your feedback : `{}` ".format(text) ): text1 = "{}{}{}".format(product, type, text) res = summarizer(text1)[0]["summary_text"] res = postprocess(res, text) st.info(res, icon="🤖") else: st.write('I think something is missing, please check your inputs!') st.markdown("----") st.image("Screenshot 2022-11-20 at 5.40.54 AM.png")