Spaces:
Sleeping
Sleeping
import os | |
import json | |
import gradio as gr | |
from llama_cpp import Llama | |
# Get environment variables | |
model_id = os.getenv('MODEL') | |
quant = os.getenv('QUANT') | |
chat_template = os.getenv('CHAT_TEMPLATE') | |
# Interface variables | |
model_name = "NexoNimbus-7B" | |
title = f"๐ฎ NexoNimbus-7B" | |
description = f"Chat with <a href=\"https://huggingface.co/{model_id}\">{model_name}</a> in GGUF format ({quant})!" | |
# Initialize the LLM | |
llm = Llama(model_path="model.gguf", | |
n_ctx=32768, | |
n_threads=2, | |
chat_format=chat_template) | |
# Function for streaming chat completions | |
def chat_stream_completion(message, history, system_prompt): | |
messages_prompts = [{"role": "system", "content": system_prompt}] | |
for human, assistant in history: | |
messages_prompts.append({"role": "user", "content": human}) | |
messages_prompts.append({"role": "assistant", "content": assistant}) | |
messages_prompts.append({"role": "user", "content": message}) | |
response = llm.create_chat_completion( | |
messages=messages_prompts, | |
stream=True | |
) | |
message_repl = "" | |
for chunk in response: | |
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: | |
message_repl = message_repl + chunk['choices'][0]["delta"]["content"] | |
yield message_repl | |
# Gradio chat interface | |
gr.ChatInterface( | |
fn=chat_stream_completion, | |
title=title, | |
description=description, | |
additional_inputs=[gr.Textbox("You are helpful assistant.")], | |
additional_inputs_accordion="๐ System prompt", | |
examples=[ | |
["What is a Large Language Model?"], | |
["What's 9+2-1?"], | |
["Write Python code to print the Fibonacci sequence"] | |
] | |
).queue().launch(server_name="0.0.0.0") |