Spaces:
Running
Running
from fastai.vision.all import * | |
import gradio as gr | |
# import pathlib | |
# temp = pathlib.PosixPath | |
# pathlib.PosixPath = pathlib.WindowsPath | |
vehicle_labels = ( | |
'ATV', | |
'Airplane', | |
'Ambulance', | |
'Armored Tank', | |
'Autorickshaw', | |
'Bicycle', | |
'Boat', | |
'Buggy', | |
'Bulldozer', | |
'Cargo Ship', | |
'Cargo Truck', | |
'Crane', | |
'Excavator', | |
'Ferry', | |
'Helicopter', | |
'Hot Air Baloon', | |
'Microbus', | |
'Monster Truck', | |
'Motorcycle', | |
'Multi Purpose Vehicle', | |
'Ocean Liner', | |
'Police Car', | |
'Private Car', | |
'Rickshaw', | |
'SUV', | |
'Sail Boat', | |
'Semi Truck', | |
'Sports Car', | |
'Steam Roller', | |
'Train', | |
'Transport Bus', | |
'Truck', | |
'Yacht' | |
) | |
model = load_learner('vehicle-recognizer-v2.pkl') | |
def recognize_image(image): | |
pred, idx, probs = model.predict(image) | |
return dict(zip(vehicle_labels, map(float, probs))) | |
image = gr.inputs.Image(shape=(192,192)) | |
label = gr.outputs.Label(num_top_classes=5) | |
examples = [ | |
'image1.jpg', | |
'image2.jpg', | |
'image3.jpg', | |
'image4.jpg' | |
] | |
iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) | |
iface.launch(inline=False) |