Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,492 Bytes
8f6558d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
import cv2
from tqdm import tqdm
import yaml
import numpy as np
import warnings
from skimage import img_as_ubyte
import safetensors
import safetensors.torch
warnings.filterwarnings('ignore')
import imageio
import torch
from src.facerender.pirender.config import Config
from src.facerender.pirender.face_model import FaceGenerator
from pydub import AudioSegment
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
from src.utils.paste_pic import paste_pic
from src.utils.videoio import save_video_with_watermark
try:
import webui # in webui
in_webui = True
except:
in_webui = False
class AnimateFromCoeff_PIRender():
def __init__(self, sadtalker_path, device):
opt = Config(sadtalker_path['pirender_yaml_path'], None, is_train=False)
opt.device = device
self.net_G_ema = FaceGenerator(**opt.gen.param).to(opt.device)
checkpoint_path = sadtalker_path['pirender_checkpoint']
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
self.net_G_ema.load_state_dict(checkpoint['net_G_ema'], strict=False)
print('load [net_G] and [net_G_ema] from {}'.format(checkpoint_path))
self.net_G = self.net_G_ema.eval()
self.device = device
def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256):
source_image=x['source_image'].type(torch.FloatTensor)
source_semantics=x['source_semantics'].type(torch.FloatTensor)
target_semantics=x['target_semantics_list'].type(torch.FloatTensor)
source_image=source_image.to(self.device)
source_semantics=source_semantics.to(self.device)
target_semantics=target_semantics.to(self.device)
frame_num = x['frame_num']
with torch.no_grad():
predictions_video = []
for i in tqdm(range(target_semantics.shape[1]), 'FaceRender:'):
predictions_video.append(self.net_G(source_image, target_semantics[:, i])['fake_image'])
predictions_video = torch.stack(predictions_video, dim=1)
predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:])
video = []
for idx in range(len(predictions_video)):
image = predictions_video[idx]
image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32)
video.append(image)
result = img_as_ubyte(video)
### the generated video is 256x256, so we keep the aspect ratio,
original_size = crop_info[0]
if original_size:
result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ]
video_name = x['video_name'] + '.mp4'
path = os.path.join(video_save_dir, 'temp_'+video_name)
imageio.mimsave(path, result, fps=float(25))
av_path = os.path.join(video_save_dir, video_name)
return_path = av_path
audio_path = x['audio_path']
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
new_audio_path = os.path.join(video_save_dir, audio_name+'.wav')
start_time = 0
# cog will not keep the .mp3 filename
sound = AudioSegment.from_file(audio_path)
frames = frame_num
end_time = start_time + frames*1/25*1000
word1=sound.set_frame_rate(16000)
word = word1[start_time:end_time]
word.export(new_audio_path, format="wav")
save_video_with_watermark(path, new_audio_path, av_path, watermark= False)
print(f'The generated video is named {video_save_dir}/{video_name}')
if 'full' in preprocess.lower():
# only add watermark to the full image.
video_name_full = x['video_name'] + '_full.mp4'
full_video_path = os.path.join(video_save_dir, video_name_full)
return_path = full_video_path
paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False)
print(f'The generated video is named {video_save_dir}/{video_name_full}')
else:
full_video_path = av_path
#### paste back then enhancers
if enhancer:
video_name_enhancer = x['video_name'] + '_enhanced.mp4'
enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer)
av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer)
return_path = av_path_enhancer
try:
enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
except:
enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False)
print(f'The generated video is named {video_save_dir}/{video_name_enhancer}')
os.remove(enhanced_path)
os.remove(path)
os.remove(new_audio_path)
return return_path
|