File size: 12,349 Bytes
8f6558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch
"""

import numpy as np
import  torch
import torch.nn.functional as F
from scipy.io import loadmat
from src.face3d.util.load_mats import transferBFM09
import os

def perspective_projection(focal, center):
    # return p.T (N, 3) @ (3, 3) 
    return np.array([
        focal, 0, center,
        0, focal, center,
        0, 0, 1
    ]).reshape([3, 3]).astype(np.float32).transpose()

class SH:
    def __init__(self):
        self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)]
        self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)]



class ParametricFaceModel:
    def __init__(self, 
                bfm_folder='./BFM', 
                recenter=True,
                camera_distance=10.,
                init_lit=np.array([
                    0.8, 0, 0, 0, 0, 0, 0, 0, 0
                    ]),
                focal=1015.,
                center=112.,
                is_train=True,
                default_name='BFM_model_front.mat'):
        
        if not os.path.isfile(os.path.join(bfm_folder, default_name)):
            transferBFM09(bfm_folder)
            
        model = loadmat(os.path.join(bfm_folder, default_name))
        # mean face shape. [3*N,1]
        self.mean_shape = model['meanshape'].astype(np.float32)
        # identity basis. [3*N,80]
        self.id_base = model['idBase'].astype(np.float32)
        # expression basis. [3*N,64]
        self.exp_base = model['exBase'].astype(np.float32)
        # mean face texture. [3*N,1] (0-255)
        self.mean_tex = model['meantex'].astype(np.float32)
        # texture basis. [3*N,80]
        self.tex_base = model['texBase'].astype(np.float32)
        # face indices for each vertex that lies in. starts from 0. [N,8]
        self.point_buf = model['point_buf'].astype(np.int64) - 1
        # vertex indices for each face. starts from 0. [F,3]
        self.face_buf = model['tri'].astype(np.int64) - 1
        # vertex indices for 68 landmarks. starts from 0. [68,1]
        self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1

        if is_train:
            # vertex indices for small face region to compute photometric error. starts from 0.
            self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1
            # vertex indices for each face from small face region. starts from 0. [f,3]
            self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1
            # vertex indices for pre-defined skin region to compute reflectance loss
            self.skin_mask = np.squeeze(model['skinmask'])
        
        if recenter:
            mean_shape = self.mean_shape.reshape([-1, 3])
            mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True)
            self.mean_shape = mean_shape.reshape([-1, 1])

        self.persc_proj = perspective_projection(focal, center)
        self.device = 'cpu'
        self.camera_distance = camera_distance
        self.SH = SH()
        self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32)
        

    def to(self, device):
        self.device = device
        for key, value in self.__dict__.items():
            if type(value).__module__ == np.__name__:
                setattr(self, key, torch.tensor(value).to(device))

    
    def compute_shape(self, id_coeff, exp_coeff):
        """
        Return:
            face_shape       -- torch.tensor, size (B, N, 3)

        Parameters:
            id_coeff         -- torch.tensor, size (B, 80), identity coeffs
            exp_coeff        -- torch.tensor, size (B, 64), expression coeffs
        """
        batch_size = id_coeff.shape[0]
        id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff)
        exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff)
        face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1])
        return face_shape.reshape([batch_size, -1, 3])
    

    def compute_texture(self, tex_coeff, normalize=True):
        """
        Return:
            face_texture     -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.)

        Parameters:
            tex_coeff        -- torch.tensor, size (B, 80)
        """
        batch_size = tex_coeff.shape[0]
        face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex
        if normalize:
            face_texture = face_texture / 255.
        return face_texture.reshape([batch_size, -1, 3])


    def compute_norm(self, face_shape):
        """
        Return:
            vertex_norm      -- torch.tensor, size (B, N, 3)

        Parameters:
            face_shape       -- torch.tensor, size (B, N, 3)
        """

        v1 = face_shape[:, self.face_buf[:, 0]]
        v2 = face_shape[:, self.face_buf[:, 1]]
        v3 = face_shape[:, self.face_buf[:, 2]]
        e1 = v1 - v2
        e2 = v2 - v3
        face_norm = torch.cross(e1, e2, dim=-1)
        face_norm = F.normalize(face_norm, dim=-1, p=2)
        face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1)
        
        vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2)
        vertex_norm = F.normalize(vertex_norm, dim=-1, p=2)
        return vertex_norm


    def compute_color(self, face_texture, face_norm, gamma):
        """
        Return:
            face_color       -- torch.tensor, size (B, N, 3), range (0, 1.)

        Parameters:
            face_texture     -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.)
            face_norm        -- torch.tensor, size (B, N, 3), rotated face normal
            gamma            -- torch.tensor, size (B, 27), SH coeffs
        """
        batch_size = gamma.shape[0]
        v_num = face_texture.shape[1]
        a, c = self.SH.a, self.SH.c
        gamma = gamma.reshape([batch_size, 3, 9])
        gamma = gamma + self.init_lit
        gamma = gamma.permute(0, 2, 1)
        Y = torch.cat([
             a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device),
            -a[1] * c[1] * face_norm[..., 1:2],
             a[1] * c[1] * face_norm[..., 2:],
            -a[1] * c[1] * face_norm[..., :1],
             a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2],
            -a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:],
            0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1),
            -a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:],
            0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2  - face_norm[..., 1:2] ** 2)
        ], dim=-1)
        r = Y @ gamma[..., :1]
        g = Y @ gamma[..., 1:2]
        b = Y @ gamma[..., 2:]
        face_color = torch.cat([r, g, b], dim=-1) * face_texture
        return face_color

    
    def compute_rotation(self, angles):
        """
        Return:
            rot              -- torch.tensor, size (B, 3, 3) pts @ trans_mat

        Parameters:
            angles           -- torch.tensor, size (B, 3), radian
        """

        batch_size = angles.shape[0]
        ones = torch.ones([batch_size, 1]).to(self.device)
        zeros = torch.zeros([batch_size, 1]).to(self.device)
        x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:],
        
        rot_x = torch.cat([
            ones, zeros, zeros,
            zeros, torch.cos(x), -torch.sin(x), 
            zeros, torch.sin(x), torch.cos(x)
        ], dim=1).reshape([batch_size, 3, 3])
        
        rot_y = torch.cat([
            torch.cos(y), zeros, torch.sin(y),
            zeros, ones, zeros,
            -torch.sin(y), zeros, torch.cos(y)
        ], dim=1).reshape([batch_size, 3, 3])

        rot_z = torch.cat([
            torch.cos(z), -torch.sin(z), zeros,
            torch.sin(z), torch.cos(z), zeros,
            zeros, zeros, ones
        ], dim=1).reshape([batch_size, 3, 3])

        rot = rot_z @ rot_y @ rot_x
        return rot.permute(0, 2, 1)


    def to_camera(self, face_shape):
        face_shape[..., -1] = self.camera_distance - face_shape[..., -1]
        return face_shape

    def to_image(self, face_shape):
        """
        Return:
            face_proj        -- torch.tensor, size (B, N, 2), y direction is opposite to v direction

        Parameters:
            face_shape       -- torch.tensor, size (B, N, 3)
        """
        # to image_plane
        face_proj = face_shape @ self.persc_proj
        face_proj = face_proj[..., :2] / face_proj[..., 2:]

        return face_proj


    def transform(self, face_shape, rot, trans):
        """
        Return:
            face_shape       -- torch.tensor, size (B, N, 3) pts @ rot + trans

        Parameters:
            face_shape       -- torch.tensor, size (B, N, 3)
            rot              -- torch.tensor, size (B, 3, 3)
            trans            -- torch.tensor, size (B, 3)
        """
        return face_shape @ rot + trans.unsqueeze(1)


    def get_landmarks(self, face_proj):
        """
        Return:
            face_lms         -- torch.tensor, size (B, 68, 2)

        Parameters:
            face_proj       -- torch.tensor, size (B, N, 2)
        """  
        return face_proj[:, self.keypoints]

    def split_coeff(self, coeffs):
        """
        Return:
            coeffs_dict     -- a dict of torch.tensors

        Parameters:
            coeffs          -- torch.tensor, size (B, 256)
        """
        id_coeffs = coeffs[:, :80]
        exp_coeffs = coeffs[:, 80: 144]
        tex_coeffs = coeffs[:, 144: 224]
        angles = coeffs[:, 224: 227]
        gammas = coeffs[:, 227: 254]
        translations = coeffs[:, 254:]
        return {
            'id': id_coeffs,
            'exp': exp_coeffs,
            'tex': tex_coeffs,
            'angle': angles,
            'gamma': gammas,
            'trans': translations
        }
    def compute_for_render(self, coeffs):
        """
        Return:
            face_vertex     -- torch.tensor, size (B, N, 3), in camera coordinate
            face_color      -- torch.tensor, size (B, N, 3), in RGB order
            landmark        -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction
        Parameters:
            coeffs          -- torch.tensor, size (B, 257)
        """
        coef_dict = self.split_coeff(coeffs)
        face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp'])
        rotation = self.compute_rotation(coef_dict['angle'])


        face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans'])
        face_vertex = self.to_camera(face_shape_transformed)
        
        face_proj = self.to_image(face_vertex)
        landmark = self.get_landmarks(face_proj)

        face_texture = self.compute_texture(coef_dict['tex'])
        face_norm = self.compute_norm(face_shape)
        face_norm_roted = face_norm @ rotation
        face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma'])

        return face_vertex, face_texture, face_color, landmark

    def compute_for_render_woRotation(self, coeffs):
        """
        Return:
            face_vertex     -- torch.tensor, size (B, N, 3), in camera coordinate
            face_color      -- torch.tensor, size (B, N, 3), in RGB order
            landmark        -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction
        Parameters:
            coeffs          -- torch.tensor, size (B, 257)
        """
        coef_dict = self.split_coeff(coeffs)
        face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp'])
        #rotation = self.compute_rotation(coef_dict['angle'])


        #face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans'])
        face_vertex = self.to_camera(face_shape)
        
        face_proj = self.to_image(face_vertex)
        landmark = self.get_landmarks(face_proj)

        face_texture = self.compute_texture(coef_dict['tex'])
        face_norm = self.compute_norm(face_shape)
        face_norm_roted = face_norm                                    # @ rotation
        face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma'])

        return face_vertex, face_texture, face_color, landmark


if __name__ == '__main__':
    transferBFM09()