File size: 12,466 Bytes
e3abedf
 
 
 
 
 
67a4a38
e3abedf
 
 
 
 
 
 
 
 
f9a1d72
e3abedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a4a38
e3abedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a1d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3abedf
f9a1d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3abedf
 
 
 
 
 
 
 
 
f9a1d72
e3abedf
 
 
 
 
 
f9a1d72
e3abedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a1d72
e3abedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a1d72
e3abedf
f9a1d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3abedf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import subprocess
import random
import json
from datetime import datetime
from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
    ACTION_PROMPT, ADD_PROMPT, COMPRESS_HISTORY_PROMPT, LOG_PROMPT,
    LOG_RESPONSE, MODIFY_PROMPT, PRE_PREFIX, SEARCH_QUERY, READ_PROMPT,
    TASK_PROMPT, UNDERSTAND_TEST_RESULTS_PROMPT
)
from utils import parse_action, parse_file_content, read_python_module_structure

# Global Variables
terminal_history = ""

# Component Library
components_registry = {
    "Button": {
        "properties": {"label": "Click Me", "onclick": ""},
        "description": "A clickable button",
        "code_snippet": 'gr.Button(value="{label}", variant="primary")',
    },
    "Text Input": {
        "properties": {"value": "", "placeholder": "Enter text"},
        "description": "A field for entering text",
        "code_snippet": 'gr.Textbox(label="{placeholder}")',
    },
    "Image": {
        "properties": {"src": "#", "alt": "Image"},
        "description": "Displays an image",
        "code_snippet": 'gr.Image(label="{alt}")',
    },
    "Dropdown": {
        "properties": {"choices": ["Option 1", "Option 2"], "value": ""},
        "description": "A dropdown menu for selecting options",
        "code_snippet": 'gr.Dropdown(choices={choices}, label="Dropdown")',
    },
    # Add more components here...
}

# NLP Model (Example using Hugging Face)
nlp_model_names = [
    "google/flan-t5-small",
    "Qwen/CodeQwen1.5-7B-Chat-GGUF",
    "bartowski/Codestral-22B-v0.1-GGUF",
    "bartowski/AutoCoder-GGUF"
]
nlp_models = []

for nlp_model_name in nlp_model_names:
    try:
        cached_download(hf_hub_url(nlp_model_name, revision="main"))
        nlp_models.append(InferenceClient(nlp_model_name))
    except:
        nlp_models.append(None)

# Function to get NLP model response
def get_nlp_response(input_text, model_index):
    if nlp_models[model_index]:
        response = nlp_models[model_index].text_generation(input_text)
        return response.generated_text
    else:
        return "NLP model not available."

# Component Class
class Component:
    def __init__(self, type, properties=None, id=None):
        self.id = id or random.randint(1000, 9999)
        self.type = type
        self.properties = properties or components_registry[type]["properties"].copy()

    def to_dict(self):
        return {
            "id": self.id,
            "type": self.type,
            "properties": self.properties,
        }

    def render(self):
        # Properly format choices for Dropdown
        if self.type == "Dropdown":
            self.properties["choices"] = (
                str(self.properties["choices"])
                .replace("[", "")
                .replace("]", "")
                .replace("'", "")
            )
        return components_registry[self.type]["code_snippet"].format(**self.properties)

# App Creation Process Class
class AppCreationProcess:
    def __init__(self):
        self.current_step = 1
        self.app_name = ""
        self.components = []

    def next_step(self):
        self.current_step += 1

    def previous_step(self):
        if self.current_step > 1:
            self.current_step -= 1

    def get_current_step_info(self):
        steps = {
            1: "App Initialization",
            2: "Component Addition",
            3: "Property Configuration",
            4: "Code Generation",
            5: "Deployment"
        }
        return f"Step {self.current_step}: {steps[self.current_step]}"

    def add_component(self, component_type):
        new_component = Component(component_type)
        self.components.append(new_component.to_dict())
        return self.update_app_canvas()

    def set_component_property(self, component_id, property_name, property_value):
        for component in self.components:
            if component['id'] == component_id:
                if property_name in component['properties']:
                    component['properties'][property_name.strip()] = property_value.strip()
                    return self.update_app_canvas(), f"Property '{property_name}' set to '{property_value}' for component {component_id}"
                else:
                    return None, f"Error: Property '{property_name}' not found in component {component_id}"
        return None, f"Error: Component with ID {component_id} not found."

    def update_app_canvas(self):
        components_html = "".join([
            f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>"
            for component in self.components
        ])
        return components_html

    def generate_python_code(self):
        code = f"""import gradio as gr\n\nwith gr.Blocks() as {self.app_name}:\n"""
        for component in self.components:
            code += "    " + Component(**component).render() + "\n"
        code += f"\n{self.app_name}.launch()\n"
        return code

    def deploy_to_huggingface(self):
        # Generate Python code
        code = self.generate_python_code()
        # Create requirements.txt
        with open("requirements.txt", "w") as f:
            f.write("gradio==3.32.0\n")
        # Create the app.py file
        with open("app.py", "w") as f:
            f.write(code)
        # Execute the deployment command
        try:
            subprocess.run(["huggingface-cli", "repo", "create", "--type", "space", "--space_sdk", "gradio", self.app_name], check=True)
            subprocess.run(["git", "init"], cwd=f"./{self.app_name}", check=True)
            subprocess.run(["git", "add", "."], cwd=f"./{self.app_name}", check=True)
            subprocess.run(["git", "commit", "-m", "Initial commit"], cwd=f"./{self.app_name}", check=True)
            subprocess.run(["git", "push", "https://huggingface.co/spaces/" + self.app_name, "main"], cwd=f"./{self.app_name}", check=True)
            return f"Successfully deployed to Hugging Face Spaces: https://huggingface.co/spaces/{self.app_name}"
        except Exception as e:
            return f"Error deploying to Hugging Face Spaces: {e}"

app_process = AppCreationProcess()

# Function to handle terminal input
def run_terminal_command(command, history):
    global terminal_history
    output = ""
    try:
        # Basic command parsing (expand with NLP)
        if command.startswith("add "):
            component_type = command.split("add ", 1)[1].strip()
            output = app_process.add_component(component_type)
        elif command.startswith("set "):
            _, output = set_component_property(command)
        elif command.startswith("search "):
            search_query = command.split("search ", 1)[1].strip()
            output = i_s(search_query)
        elif command.startswith("deploy "):
            output = app_process.deploy_to_huggingface()
        else:
            # Attempt to execute command as Python code
            try:
                result = subprocess.check_output(
                    command, shell=True, stderr=subprocess.STDOUT, text=True
                )
                output = result
            except Exception as e:
                output = f"Error executing Python code: {str(e)}"
    except Exception as e:
        output = f"Error: {str(e)}"
    finally:
        terminal_history += f"User: {command}\n{output}\n"
    return terminal_history

def set_component_property(command):
    try:
        # Improved 'set' command parsing
        set_parts = command.split(" ", 2)[1:]
        if len(set_parts) != 2:
            raise ValueError("Invalid 'set' command format.")
        component_id = int(set_parts[0])  # Use component ID
        property_name, property_value = set_parts[1].split("=", 1)
        return app_process.set_component_property(component_id, property_name, property_value)
    except Exception as e:
        return None, f"Error: {str(e)}\n"

# Function to handle chat interaction
def run_chat(message, history):
    global terminal_history
    if message.startswith("!"):
        command = message[1:]
        terminal_history = run_terminal_command(command, history)
    else:
        model_index = 0  # Select the model to use for chat response
        response = get_nlp_response(message, model_index)
        if response:
            return history, terminal_history + f"User: {message}\nAssistant: {response}"
        else:
            return history, terminal_history + f"User: {message}\nAssistant: I'm sorry, I couldn't generate a response. Please try again.\n"

# Gradio Interface
with gr.Blocks() as iface:
    gr.Markdown("# Sequential App Builder")
    
    with gr.Row():
        current_step = gr.Markdown(app_process.get_current_step_info())
    
    with gr.Row():
        prev_button = gr.Button("Previous Step")
        next_button = gr.Button("Next Step")

    # Step 1: App Initialization
    with gr.Group() as step1:
        app_name_input = gr.Textbox(label="Enter App Name")
        init_app_button = gr.Button("Initialize App")

    # Step 2: Component Addition
    with gr.Group() as step2:
        component_type = gr.Dropdown(choices=list(components_registry.keys()), label="Select Component Type")
        add_component_button = gr.Button("Add Component")
        components_display = gr.HTML()

    # Step 3: Property Configuration
    with gr.Group() as step3:
        component_id = gr.Number(label="Component ID")
        property_name = gr.Textbox(label="Property Name")
        property_value = gr.Textbox(label="Property Value")
        set_property_button = gr.Button("Set Property")

    # Step 4: Code Generation
    with gr.Group() as step4:
        generated_code = gr.Code(language="python")
        generate_code_button = gr.Button("Generate Code")

    # Step 5: Deployment
    with gr.Group() as step5:
        deploy_button = gr.Button("Deploy to Hugging Face Spaces")
        deployment_status = gr.Markdown()

    # Chat and Terminal (optional, can be hidden or shown based on preference)
    with gr.Accordion("Advanced", open=False):
        chat_history = gr.Chatbot(label="Chat with Agent")
        chat_input = gr.Textbox(label="Your Message")
        chat_button = gr.Button("Send")
        
        terminal_output = gr.Textbox(lines=8, label="Terminal", value=terminal_history)
        terminal_input = gr.Textbox(label="Enter Command")
        terminal_button = gr.Button("Run")

    # Function to update visibility based on current step
    def update_visibility(step):
        return {
            step1: gr.update(visible=(step == 1)),
            step2: gr.update(visible=(step == 2)),
            step3: gr.update(visible=(step == 3)),
            step4: gr.update(visible=(step == 4)),
            step5: gr.update(visible=(step == 5)),
        }

    # Event handlers
    def next_step():
        app_process.next_step()
        return app_process.get_current_step_info(), update_visibility(app_process.current_step)

    def prev_step():
        app_process.previous_step()
        return app_process.get_current_step_info(), update_visibility(app_process.current_step)

    next_button.click(next_step, outputs=[current_step, step1, step2, step3, step4, step5])
    prev_button.click(prev_step, outputs=[current_step, step1, step2, step3, step4, step5])

    # Step 1: Initialize App
    def init_app(name):
        app_process.app_name = name
        return f"App '{name}' initialized."

    init_app_button.click(init_app, inputs=[app_name_input], outputs=[components_display])

    # Step 2: Add Component
    add_component_button.click(app_process.add_component, inputs=[component_type], outputs=[components_display])

    # Step 3: Set Property
    set_property_button.click(app_process.set_component_property, inputs=[component_id, property_name, property_value], outputs=[components_display])

    # Step 4: Generate Code
    generate_code_button.click(app_process.generate_python_code, outputs=[generated_code])

    # Step 5: Deploy
    deploy_button.click(app_process.deploy_to_huggingface, outputs=[deployment_status])

    # Existing chat and terminal functionality
    chat_button.click(run_chat, inputs=[chat_input, chat_history], outputs=[chat_history, terminal_output])
    terminal_button.click(run_terminal_command, inputs=[terminal_input, terminal_output], outputs=[terminal_output])

iface.launch()