Spaces:
Runtime error
Runtime error
File size: 14,489 Bytes
e3abedf 3965990 492f38d 3965990 e3abedf 589eb8b 3965990 e3abedf 1356474 b9c5bd8 1356474 7741f15 e3abedf 3965990 7741f15 0caeb15 3965990 7741f15 3965990 e3abedf f9a1d72 e3abedf 67a4a38 e3abedf f9a1d72 e3abedf f9a1d72 e3abedf f9a1d72 e3abedf f9a1d72 e3abedf f9a1d72 e3abedf f9a1d72 e3abedf f9a1d72 5306136 f9018bb 5306136 7e17b78 5306136 539c2f3 f9a1d72 5306136 539c2f3 e3abedf 7741f15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import gradio as gr
import os
import json
import streamlit as st
from streamlit_ace import st_ace
from agent import (
PREFIX,
ACTION_PROMPT,
SEARCH_QUERY,
TASK_PROMPT,
READ_PROMPT,
ADD_PROMPT,
MODIFY_PROMPT,
UNDERSTAND_TEST_RESULTS,
COMPRESS_HISTORY,
LOG_PROMPT,
LOG_RESPONSE,
)
import importlib
import sys
def initialize_global_variables():
global HUGGING_FACE_REPO_URL, PROJECT_ROOT, AGENT_DIRECTORY, GRADIO_SERVER_PORT
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/CodeMixt"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
GRADIO_SERVER_PORT = 7860 # Choose a consistently unused port
initialize_global_variables()
# Initialize session state attributes
for attr in ['chat_history', 'terminal_history', 'workspace_projects', 'available_agents', 'current_state']:
if attr not in st.session_state:
st.session_state[attr] = []
def save_agent_to_file(agent):
agents_path = os.path.join(PROJECT_ROOT, AGENT_DIRECTORY)
if not os.path.exists(agents_path):
os.makedirs(agents_path)
agent_file = os.path.join(agents_path, f"{agent.name}.txt")
config_file = os.path.join(agents_path, f"{agent.name}Config.txt")
with open(agent_file, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_file, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
commit_and_push_changes(f"Add agent {agent.name}")
def load_agent_prompt(agent_name):
agent_file = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(agent_file):
with open(agent_file, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
# Global Variables
terminal_history = ""
# Component Library
components_registry = {
"Button": {
"properties": {"label": "Click Me", "onclick": ""},
"description": "A clickable button",
"code_snippet": 'gr.Button(value="{label}", variant="primary")',
},
"Text Input": {
"properties": {"value": "", "placeholder": "Enter text"},
"description": "A field for entering text",
"code_snippet": 'gr.Textbox(label="{placeholder}")',
},
"Image": {
"properties": {"src": "#", "alt": "Image"},
"description": "Displays an image",
"code_snippet": 'gr.Image(label="{alt}")',
},
"Dropdown": {
"properties": {"choices": ["Option 1", "Option 2"], "value": ""},
"description": "A dropdown menu for selecting options",
"code_snippet": 'gr.Dropdown(choices={choices}, label="Dropdown")',
},
# Add more components here...
}
# NLP Model (Example using Hugging Face)
nlp_model_names = [
"google/flan-t5-small",
"Qwen/CodeQwen1.5-7B-Chat-GGUF",
"bartowski/Codestral-22B-v0.1-GGUF",
"bartowski/AutoCoder-GGUF"
]
nlp_models = []
for nlp_model_name in nlp_model_names:
try:
cached_download(hf_hub_url(nlp_model_name, revision="main"))
nlp_models.append(InferenceClient(nlp_model_name))
except:
nlp_models.append(None)
# Function to get NLP model response
def get_nlp_response(input_text, model_index):
if nlp_models[model_index]:
response = nlp_models[model_index].text_generation(input_text)
return response.generated_text
else:
return "NLP model not available."
# Component Class
class Component:
def __init__(self, type, properties=None, id=None):
self.id = id or random.randint(1000, 9999)
self.type = type
self.properties = properties or components_registry[type]["properties"].copy()
def to_dict(self):
return {
"id": self.id,
"type": self.type,
"properties": self.properties,
}
def render(self):
# Properly format choices for Dropdown
if self.type == "Dropdown":
self.properties["choices"] = (
str(self.properties["choices"])
.replace("[", "")
.replace("]", "")
.replace("'", "")
)
return components_registry[self.type]["code_snippet"].format(**self.properties)
# App Creation Process Class
class AppCreationProcess:
def __init__(self):
self.current_step = 1
self.app_name = ""
self.components = []
def get_current_step_info(self):
steps = {
1: "App Initialization",
2: "Component Addition",
3: "Property Configuration",
4: "Code Generation",
5: "Deployment"
}
return f"Step {self.current_step}: {steps[self.current_step]}"
def add_component(self, component_type):
new_component = Component(component_type)
self.components.append(new_component.to_dict())
return self.update_app_canvas()
def set_component_property(self, component_id, property_name, property_value):
for component in self.components:
if component['id'] == component_id:
if property_name in component['properties']:
component['properties'][property_name.strip()] = property_value.strip()
return self.update_app_canvas(), f"Property '{property_name}' set to '{property_value}' for component {component_id}"
else:
return None, f"Error: Property '{property_name}' not found in component {component_id}"
return None, f"Error: Component with ID {component_id} not found."
def update_app_canvas(self):
components_html = "".join([
f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>"
for component in self.components
])
return components_html
def generate_python_code(self):
code = f"""import gradio as gr\n\nwith gr.Blocks() as {self.app_name}:\n"""
for component in self.components:
code += " " + Component(**component).render() + "\n"
code += f"\n{self.app_name}.launch()\n"
return code
def deploy_to_huggingface(self):
# Generate Python code
code = self.generate_python_code()
# Create requirements.txt
with open("requirements.txt", "w") as f:
f.write("gradio==3.32.0\n")
# Create the app.py file
with open("app.py", "w") as f:
f.write(code)
# Execute the deployment command
try:
subprocess.run(["huggingface-cli", "repo", "create", "--type", "space", "--space_sdk", "gradio", self.app_name], check=True)
subprocess.run(["git", "init"], cwd=f"./{self.app_name}", check=True)
subprocess.run(["git", "add", "."], cwd=f"./{self.app_name}", check=True)
subprocess.run(["git", "commit", "-m", "Initial commit"], cwd=f"./{self.app_name}", check=True)
subprocess.run(["git", "push", "https://huggingface.co/spaces/" + self.app_name, "main"], cwd=f"./{self.app_name}", check=True)
return f"Successfully deployed to Hugging Face Spaces: https://huggingface.co/spaces/{self.app_name}"
except Exception as e:
return f"Error deploying to Hugging Face Spaces: {e}"
app_process = AppCreationProcess()
# Function to handle terminal input
def run_terminal_command(command, history):
global terminal_history
output = ""
try:
# Basic command parsing (expand with NLP)
if command.startswith("add "):
component_type = command.split("add ", 1)[1].strip()
output = app_process.add_component(component_type)
elif command.startswith("set "):
_, output = set_component_property(command)
elif command.startswith("search "):
search_query = command.split("search ", 1)[1].strip()
output = i_s(search_query)
elif command.startswith("deploy "):
output = app_process.deploy_to_huggingface()
else:
# Attempt to execute command as Python code
try:
result = subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT, text=True
)
output = result
except Exception as e:
output = f"Error executing Python code: {str(e)}"
except Exception as e:
output = f"Error: {str(e)}"
finally:
terminal_history += f"User: {command}\n{output}\n"
return terminal_history
def set_component_property(command):
try:
# Improved 'set' command parsing
set_parts = command.split(" ", 2)[1:]
if len(set_parts) != 2:
raise ValueError("Invalid 'set' command format.")
component_id = int(set_parts[0]) # Use component ID
property_name, property_value = set_parts[1].split("=", 1)
return app_process.set_component_property(component_id, property_name, property_value)
except Exception as e:
return None, f"Error: {str(e)}\n"
# Function to handle chat interaction
def run_chat(message, history):
global terminal_history
if message.startswith("!"):
command = message[1:]
terminal_history = run_terminal_command(command, history)
else:
model_index = 0 # Select the model to use for chat response
response = get_nlp_response(message, model_index)
if response:
return history, terminal_history + f"User: {message}\nAssistant: {response}"
else:
return history, terminal_history + f"User: {message}\nAssistant: I'm sorry, I couldn't generate a response. Please try again.\n"
# Gradio Interface
with gr.Blocks() as iface:
gr.Markdown("# Sequential App Builder")
with gr.Row():
current_step = gr.Markdown(app_process.get_current_step_info())
with gr.Row():
prev_button = gr.Button("Previous Step")
next_button = gr.Button("Next Step")
# Step 1: App Initialization
with gr.Group() as step1:
app_name_input = gr.Textbox(label="Enter App Name")
init_app_button = gr.Button("Initialize App")
# Step 2: Component Addition
with gr.Group() as step2:
component_type = gr.Dropdown(choices=list(components_registry.keys()), label="Select Component Type")
add_component_button = gr.Button("Add Component")
components_display = gr.HTML()
# Step 3: Property Configuration
with gr.Group() as step3:
component_id = gr.Number(label="Component ID")
property_name = gr.Textbox(label="Property Name")
property_value = gr.Textbox(label="Property Value")
set_property_button = gr.Button("Set Property")
# Step 4: Code Generation
with gr.Group() as step4:
generated_code = gr.Code(language="python")
generate_code_button = gr.Button("Generate Code")
# Step 5: Deployment
with gr.Group() as step5:
deploy_button = gr.Button("Deploy to Hugging Face Spaces")
deployment_status = gr.Markdown()
# Chat and Terminal (optional, can be hidden or shown based on preference)
with gr.Accordion("Advanced", open=False):
chat_history = gr.Chatbot(label="Chat with Agent")
chat_input = gr.Textbox(label="Your Message")
chat_button = gr.Button("Send")
terminal_output = gr.Textbox(lines=8, label="Terminal", value=terminal_history)
terminal_input = gr.Textbox(label="Enter Command")
terminal_button = gr.Button("Run")
# App Creation Process Class
class AppCreationProcess:
def __init__(self):
self.current_step = 1
self.app_name = ""
self.components = []
def get_current_step_info(self):
steps = {
1: "App Initialization",
2: "Component Addition",
3: "Property Configuration",
4: "Code Generation",
5: "Deployment"
}
def next_step():
app_process.next_step()
current_step_info = app_process.get_current_step_info()
visibility_updates = update_visibility(app_process.current_step)
# Unpack the visibility updates
step1_update = visibility_updates[step1]
step2_update = visibility_updates[step2]
step3_update = visibility_updates[step3]
step4_update = visibility_updates[step4]
step5_update = visibility_updates[step5]
return [
current_step_info, # This should be a string for the Markdown component
step1_update,
step2_update,
step3_update,
step4_update,
step5_update
]
def prev_step():
app_process.previous_step()
return app_process.get_current_step_info(), update_visibility(app_process.current_step)
next_button.click(next_step, outputs=[current_step, step1, step2, step3, step4, step5])
prev_button.click(prev_step, outputs=[current_step, step1, step2, step3, step4, step5])
# Step 1: Initialize App
def init_app(name):
app_process.app_name = name
return f"App '{name}' initialized."
init_app_button.click(init_app, inputs=[app_name_input], outputs=[components_display])
# Step 2: Add Component
add_component_button.click(app_process.add_component, inputs=[component_type], outputs=[components_display])
# Step 3: Set Property
set_property_button.click(app_process.set_component_property, inputs=[component_id, property_name, property_value], outputs=[components_display])
# Step 4: Generate Code
generate_code_button.click(app_process.generate_python_code, outputs=[generated_code])
# Step 5: Deploy
deploy_button.click(app_process.deploy_to_huggingface, outputs=[deployment_status])
# Existing chat and terminal functionality
chat_button.click(run_chat, inputs=[chat_input, chat_history], outputs=[chat_history, terminal_output])
terminal_button.click(run_terminal_command, inputs=[terminal_input, terminal_output], outputs=[terminal_output])
iface.launch(server_port=GRADIO_SERVER_PORT) |