Spaces:
Running
Running
File size: 13,696 Bytes
cdd672b 36c5b68 cdd672b 36c5b68 cdd672b 36c5b68 115f2ee cdd672b 115f2ee cdd672b 36c5b68 115f2ee 36c5b68 115f2ee 36c5b68 115f2ee 36c5b68 cdd672b 36c5b68 cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 115f2ee cdd672b 36c5b68 cdd672b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import rdflib
import seaborn as sns
import tensorflow as tf
from adjustText import adjust_text
from ampligraph.latent_features import ScoringBasedEmbeddingModel
from ampligraph.utils import restore_model
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import logging
logger = logging.getLogger(__name__)
# Start timer, count time to load graph
start_time = tf.timestamp()
g = rdflib.Graph()
uri = "urn:acmcmc:unis:"
unis = rdflib.Namespace(uri)
g.bind("unis", unis)
g.parse("universities.ttl", format="turtle")
# End timer
end_time = tf.timestamp()
logger.info("Graph loaded in {} seconds".format(end_time - start_time))
# model = restore_model("model.pkl")
# Start timer, count time to load model
start_time = tf.timestamp()
model = ScoringBasedEmbeddingModel(k=150, eta=10, scoring_type="ComplEx")
model.load_metadata("model/model")
model.build_full_model()
super(ScoringBasedEmbeddingModel, model).load_weights("model/")
# End timer
end_time = tf.timestamp()
logger.info("Model loaded in {} seconds".format(end_time - start_time))
def separate_concepts(concepts):
concept_list = concepts.split(",")
# Trim the strings
concept_list = [x.strip() for x in concept_list]
return concept_list
def pca(embeddings):
pca = PCA(n_components=2)
pca.fit(embeddings)
entity_embeddings_pca = pca.transform(embeddings)
return entity_embeddings_pca
def cluster(embeddings):
clustering_algorithm = KMeans(n_clusters=6, n_init=50, max_iter=500, random_state=0)
clusters = clustering_algorithm.fit_predict(embeddings)
return clusters
def get_concept_name(concept_uri):
"""
Get the name of the concept from the URI
"""
results = g.query(
f"""SELECT ?name
WHERE {{
<{concept_uri}> <urn:acmcmc:unis:name> ?name .
}}"""
)
return pd.DataFrame(results)[0][0]
def get_similarities_to_node(array_of_triples, model):
"""
Calculate the similarity between the embeddings of a node and a list of other nodes
"""
# Cosine similarity using tensorflow
indexes = model.get_indexes(array_of_triples)
scores = model(indexes)
return scores
def process_user_input_concept(concept_chooser):
"""
The user input is the URI of the concept. Get the similarites between the concept and the institutions
"""
all_ids_institutions = np.loadtxt(
"institutions.csv", delimiter=",", skiprows=1, dtype=str, quotechar='"'
)
# Remove duplicates based on the first column
all_ids_institutions = all_ids_institutions[
~pd.DataFrame(all_ids_institutions).duplicated(0)
]
chosen_concepts = separate_concepts(concept_chooser)
chosen_concepts_names = [get_concept_name(concept) for concept in chosen_concepts]
all_similarities = {}
for concept in chosen_concepts:
s = all_ids_institutions[:, 0]
p = np.array(["urn:acmcmc:unis:institution_related_to_concept"] * len(s))
o = np.array([concept] * len(s))
array_of_triples = np.array([s, p, o]).T
scores = get_similarities_to_node(array_of_triples, model)
all_similarities[concept] = scores
# Now, average the similarities
scores = np.stack(list(all_similarities.values()), axis=0)
scores = np.mean(scores, axis=0)
table_df = pd.DataFrame(
{
"institution": s,
"mean_similarity": scores.flatten(),
"institution_name": all_ids_institutions[:, 1],
# "num_articles": all_ids_institutions[:, 2].astype(int),
}
)
# Add the individual similarities
for i, concept in enumerate(chosen_concepts):
table_df[f"similarity_to_{chosen_concepts_names[i]}"] = all_similarities[concept]
# Reorder the columns so that the mean similarity is after the individual similarities and before the institution name
table_df = table_df[
["institution"]
+ [f"similarity_to_{chosen_concepts_names[i]}" for i in range(len(chosen_concepts))]
+ ["mean_similarity", "institution_name"]
]
# Sort by mean similarity
table_df = table_df.sort_values(by=["mean_similarity"], ascending=False)
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
return (
table_df,
gr.update(visible=True),
gr.update(visible=True),
#gr.update(visible=True),
#f'Concept names: {", ".join(concept_names)}',
)
def calculate_emdeddings_and_pca(table):
gr.Info("Performing PCA and clustering...")
# Perform PCA
embeddings_of_institutions = model.get_embeddings(
entities=np.array(table["institution"])
)
entity_embeddings_pca = pca(embeddings_of_institutions)
# Perform clustering
clusters = cluster(embeddings_of_institutions)
plot_df = pd.DataFrame(
{
"embedding_x": entity_embeddings_pca[:, 0],
"embedding_y": entity_embeddings_pca[:, 1],
"cluster": "cluster" + pd.Series(clusters).astype(str),
}
)
# Toast message
gr.Info("PCA and clustering done!")
return plot_df
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
institution_id = table["institution"][evt.index[0]]
try:
embeddings_df = embeddings_var["embeddings_df"]
plot_df = pd.DataFrame(
{
"institution": table["institution"].values,
"institution_name": table["institution_name"].values,
"embedding_x": embeddings_df["embedding_x"].values,
"embedding_y": embeddings_df["embedding_y"].values,
"cluster": embeddings_df["cluster"].values,
# "num_articles": table["num_articles"].values,
}
)
return plot_embeddings(plot_df, institution_id)
except:
pass
def click_on_show_plot(table):
embeddings_df = calculate_emdeddings_and_pca(table)
plot_df = pd.DataFrame(
{
"institution": table["institution"].values,
"Institution_name": table["institution Name"].values,
"embedding_x": embeddings_df["embedding_x"].values,
"embedding_y": embeddings_df["embedding_y"].values,
"cluster": embeddings_df["cluster"].values,
# "num_articles": table["num_articles"].values,
}
)
fig = plot_embeddings(plot_df, None)
return fig, {"embeddings_df": plot_df}
def plot_embeddings(plot_df, institution_id):
fig = plt.figure(figsize=(12, 12))
np.random.seed(0)
# fig.title("{} embeddings".format(parameter).capitalize())
ax = sns.scatterplot(
data=plot_df,
x="embedding_x",
y="embedding_y",
hue="cluster",
)
row_of_institution = plot_df[plot_df["institution"] == institution_id]
if not row_of_institution.empty:
ax.text(
row_of_institution["embedding_x"],
row_of_institution["embedding_y"],
row_of_institution["institution_name"].values[0],
horizontalalignment="left",
size="medium",
color="black",
weight="normal",
)
# Also draw a point for the institution
ax.scatter(
row_of_institution["embedding_x"],
row_of_institution["embedding_y"],
color="black",
s=100,
marker="x",
)
# texts = []
# for i, point in plot_df.iterrows():
# if point["institution"] == institution_id:
# texts.append(
# fig.text(
# point["embedding_x"] + 0.02,
# point["embedding_y"] + 0.01,
# str(point["institution_name"]),
# )
# )
# adjust_text(texts)
return fig
def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.SelectData):
"""
Get the authors of an institution
"""
institution = institutions_table["institution"][0]
number_of_row = evt.index[0]
institution = institutions_table["institution"][number_of_row]
concepts = separate_concepts(concept_chooser)
results_dfs = []
for concept in concepts:
# Create a dataframe of the authors and the number of articles they have written for each concept
result = g.query(
f"""SELECT ?author ?name (COUNT (?article) AS ?num_articles)
WHERE {{
?author a <urn:acmcmc:unis:Author> .
?author <urn:acmcmc:unis:name> ?name .
?article <urn:acmcmc:unis:written_in_institution> <{institution}> .
?article <urn:acmcmc:unis:has_author> ?author .
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
}}
GROUP BY ?author ?name
ORDER BY DESC(COUNT (?article))
"""
)
result_df = pd.DataFrame(result)
result_df.columns = ["author", "name", "num_articles"]
results_dfs.append(result_df)
# Now, aggregate the results into a single dataframe by summing the number of articles
results_df = pd.concat(results_dfs)
results_df = results_df.groupby(["author", "name"]).sum().reset_index()
# Sort by number of articles
results_df = results_df.sort_values(by=["num_articles"], ascending=False)
return results_df, gr.update(visible=True)
# %%
theme = gr.themes.Default(primary_hue="cyan", secondary_hue="fuchsia")
with gr.Blocks(theme=theme) as demo:
embeddings_df = gr.State({})
# App title and description
title = gr.Markdown(
"""
# Universities Explorer
This app allows you to explore the institutions more closely related to a concept.
It uses embeddings of institutions and concepts to calculate the similarity between them. The embedding model, [ComplEx](https://doi.org/10.48550/arXiv.1606.06357), was trained using the [AmpliGraph](https://github.com/Accenture/AmpliGraph) library. The data comes from the [OpenAlex](https://openalex.org/) dataset, which contains information about scientific articles, authors, institutions, and concepts.
"""
)
with gr.Group() as institution_search:
concept_chooser = gr.Textbox(
label="Concept URI",
info="Using OpenAlex, find the URI of the concept you want to search for. For example, the URI of the concept 'Knowledge Graph' is https://openalex.org/C2987255567, while the URI of the concept 'Natural Language Processing' is https://openalex.org/C204321447. You can find the URI of a concept by searching for it on OpenAlex and copying the URL from the address bar. You can also search for multiple concepts by separating them with a comma.",
placeholder="https://openalex.org/C2987255567, https://openalex.org/C204321447",
value="https://openalex.org/C2987255567, https://openalex.org/C204321447",
)
concept_name_label = gr.Markdown("Concept name: ", visible=False)
# Table for name of institution and similarity to concept
btn_search_institutions = gr.Button("Search institutions", variant="primary")
table = gr.Dataframe(
interactive=False, visible=False, elem_classes="institutions", wrap=True
)
btn_search_institutions.click(
lambda: gr.update(visible=True), outputs=[table], queue=True
)
btn_plot_embeddings = gr.Button(
"Plot embeddings", variant="primary", visible=False, elem_classes="embeddings"
)
# Description of what plot embeddings does
plot_embeddings_info = gr.Markdown(
"""
This button will plot the embeddings of the institutions related to the concept. The embeddings are calculated using the trained model and then reduced to 2 dimensions using PCA. The institutions are then clustered using KMeans.
Running this may take a while, as we need to calculate the embeddings for all institutions and then perform PCA and clustering.
""",
visible=False,
)
btn_search_institutions.click(
process_user_input_concept,
inputs=[concept_chooser],
outputs=[
table,
btn_plot_embeddings,
plot_embeddings_info,
#concept_name_label,
#concept_name_label,
],
queue=True,
)
plot = gr.Plot(visible=False, elem_classes="embeddings")
btn_plot_embeddings.click(
lambda: gr.update(visible=True), outputs=[plot], queue=True
)
btn_plot_embeddings.click(
click_on_show_plot,
inputs=[table],
outputs=[plot, embeddings_df],
queue=True,
)
# When the user selects a row in the table, get the authors of that institution and display them in a dataframe
with gr.Group(visible=False, elem_classes="authors") as authors:
table_authors = gr.Dataframe(
interactive=False, label="Authors in institution writing about concept"
)
table.select(
get_authors_of_institution,
inputs=[table, concept_chooser],
outputs=[table_authors],
)
table.select(
click_on_institution,
inputs=[table, embeddings_df],
outputs=[plot],
)
btn_clear = gr.ClearButton(components=[table, plot, table_authors])
# Author information
author_info = gr.Markdown(
"""
This demo has been built by [Aldan Creo](
https://acmc-website.web.app/).
"""
)
demo.queue()
demo.launch()
|