File size: 15,345 Bytes
7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bf9e30f 7e73556 bd73a7b 7e73556 bf9e30f 7e73556 bf9e30f 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bf9e30f 7e73556 bd73a7b 7e73556 bf9e30f 7e73556 bf9e30f 7e73556 bf9e30f bd73a7b bf9e30f 7e73556 bf9e30f 7e73556 bf9e30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import datetime
import json
import logging
import os
import re
import datasets
import dateutil.parser
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# %%
# Now, create message groups ('conversations')
# The idea is to group messages that are close in time
# We'll use a 180 minute threshold
MINUTES_THRESHOLD = 180
MIN_MESSAGES_THRESHOLD = 5
def group_messages(messages_iterable):
groups = []
current_group = [next(messages_iterable)]
for message in messages_iterable:
assert len(current_group) > 0 # We should never have an empty group
if (
message["timestamp"] - current_group[-1]["timestamp"]
< MINUTES_THRESHOLD * 60
):
current_group.append(message)
else:
groups.append(current_group)
current_group = [message]
groups.append(current_group)
return groups
def printable_conversation(conversation):
return "\n".join(
[f"{message['contact_name']}: {message['message']}" for message in conversation]
)
import contextualSpellCheck
# %%
# Use spacy to spell check the messages
import spacy
from spellchecker import SpellChecker
spell = SpellChecker()
# nlp = spacy.load("es_core_news_sm")
nlp = spacy.load("en_core_web_sm")
def spell_check_conversation(conversation):
for i, message in enumerate(conversation["conversations"]):
# Use SpaCy to get the words
words = spell.split_words(message["message"])
logger.info(f"Words: {words}")
corrected_message = []
for word in words:
correction = spell.correction(word)
if (correction != None) and (correction != word):
logger.info(f"Spell check: {word} -> {correction}")
corrected_message.append(correction)
else:
corrected_message.append(word)
logger.info(f"Corrected message: {corrected_message}")
joined_message = " ".join(corrected_message)
conversation["conversations"][i]["message"] = joined_message
return conversation
def spell_check_conversation_spacy(conversation):
nlp.add_pipe(
"contextual spellchecker",
config={
"model_name": "bert-base-multilingual-uncased",
"max_edit_dist": 2,
},
)
docs = list(nlp.pipe([msg["message"] for msg in conversation["conversations"]]))
for i, doc in enumerate(docs):
if doc._.performed_spellCheck:
logger.info(f"Spell checked: {doc.text} -> {doc._.outcome_spellCheck}")
conversation["conversations"][i]["message"] = doc._.outcome_spellCheck
return conversation
def remove_whatapp_annotations(conversation):
"""
Removes the following annotations from the messages:
- <This message was edited>
"""
for message in conversation["conversations"]:
message["message"] = re.sub(
r"<This message was edited>", "", message["message"]
)
return conversation
# %%
"""
Sometimes, people write concurrently in the same conversation. We'll try to detect that and reorder the messages.
For example, if we have a conversation like this:
A: Hi
A: How are you?
B: Hi
B: I'm fine, thanks
A: I'm fine too
We'll reorder it to:
A: Hi
B: Hi
A: How are you?
B: I'm fine, thanks
A: I'm fine too
To do it, we'll use MobileBERT with the next sentence prediction head. We'll use the first message as the first sentence, and the second message as the second sentence. If the model predicts that the second sentence is more likely to be the next sentence, we'll swap the messages.
"""
import torch
from transformers import AutoModelForNextSentencePrediction, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForNextSentencePrediction.from_pretrained("bert-base-uncased")
if torch.cuda.is_available():
model.cuda()
def swap_messages_if_needed(message1, message2):
# If the messages have the same contact, we don't swap them
if message1["contact_name"] == message2["contact_name"]:
return message1, message2
# The timestamp must have a difference of less than 2 minutes. First, convert to datetime
datetime1 = datetime.datetime.fromtimestamp(message1["timestamp"])
datetime2 = datetime.datetime.fromtimestamp(message2["timestamp"])
if (datetime2 - datetime1).total_seconds() > 2 * 60:
return message1, message2
# If one of the messages has less than 3 words, we don't swap them
if len(message1["message"].split()) < 3 or len(message2["message"].split()) < 3:
return message1, message2
# We'll use the first message as the first sentence, and the second message as the second sentence
inputs = tokenizer(message1["message"], message2["message"], return_tensors="pt")
reverse_inputs = tokenizer(
message2["message"], message1["message"], return_tensors="pt"
)
# Join them in a single batch
joined_inputs = torch.cat([inputs["input_ids"], reverse_inputs["input_ids"]], dim=0)
if torch.cuda.is_available():
joined_inputs = joined_inputs.cuda()
with torch.no_grad():
outputs = model(input_ids=joined_inputs)
# The output is a tuple with the logits for each class (next sentence or not)
# We'll take the first one (next sentence)
logits = outputs[0]
# Apply softmax
logits = torch.softmax(logits, dim=1)
# We have two probabilities: the probability of 1 -> 2, and the probability of 2 -> 1
# We'll take the difference
swap = logits[0, 0] - logits[1, 0] < -0.2
if swap:
# Swap the messages
logger.info(
f"Swapping messages: {message1['message']} <-> {message2['message']}"
)
return message2, message1
else:
# logger.info(f"NOT swapping messages: {message1['message']} <-> {message2['message']}")
return message1, message2
def swap_messages_if_needed_in_conversation(conversation):
# We'll use the first message as the first sentence, and the second message as the second sentence
if len(conversation) <= 2:
return conversation
new_conversation = [
conversation[0],
conversation[1],
] # We'll always keep the first message in the same position
for i in range(2, len(conversation)):
message1 = new_conversation[-1]
message2 = conversation[i]
message1, message2 = swap_messages_if_needed(message1, message2)
new_conversation[-1] = message1
new_conversation.append(message2)
# logger.info(f"\nOriginal conversation:\n{printable_conversation(conversation)}")
# logger.info(f"\nNew conversation:\n{printable_conversation(new_conversation)}")
return new_conversation
test_conversation = [
{"message": "Hola!", "contact_name": "A", "timestamp": 1},
{
"message": "Está todo bien, gracias por preguntar!",
"contact_name": "B",
"timestamp": 2,
},
{
"message": "Hola, qué tal estás? Espero que vaya todo bien por España.",
"contact_name": "A",
"timestamp": 3,
},
]
# logger.info(swap_messages_if_needed_in_conversation(test_conversation))
# %%
# Now, we'll train an mT5 model to generate the next message in a conversation
import os
# %%
def process_chat_file(file, do_spelling_correction, whatsapp_name, datetime_dayfirst, message_line_format, do_reordering=False):
"""
Process a chat file and return a dataset with the conversations.
"""
exp = re.compile(
# r"(?P<msg_datetime>.+?) - (?P<contact_name>.+): (?P<message>.+)"
# r"\[?(?P<msg_datetime>\S+,\s\S+?(?:\s[APap][Mm])?)\]? (?:- )?(?P<contact_name>.+): (?P<message>.+)"
message_line_format
)
def process_line(example):
# The lines have this format: dd/mm/yy, hh:mm - <person>: <msg>
try:
groups = exp.match(example["text"]).groupdict()
timestamp = dateutil.parser.parse(groups['msg_datetime'], dayfirst=datetime_dayfirst).timestamp()
return {
"message": groups["message"],
"contact_name": groups["contact_name"],
"timestamp": timestamp,
}
except Exception as e:
logger.exception(example["text"])
raise e
ds = (
datasets.load_dataset("text", data_files=[file])["train"]
.filter(
# Has to begin by date, time, contact name, and contain at least a ':' symbol
lambda x: re.match(
r"^\d{1,2}/\d{1,2}/\d{1,2},\s\d{2}:\d{2}\s-\s.+:", x["text"]
)
)
.map(process_line, remove_columns=["text"])
)
# Filter out messages that just say '<Media omitted>'
ds = ds.filter(lambda x: x["message"] != "<Media omitted>")
groups = group_messages(iter(ds))
# Generate the dataset
conversations_ds = datasets.Dataset.from_dict({"conversations": groups})
# Filter out conversations with less than 5 messages
conversations_ds = conversations_ds.filter(
lambda x: len(x["conversations"]) >= MIN_MESSAGES_THRESHOLD
)
conversations_ds_without_whatsapp_annotations = conversations_ds.map(
remove_whatapp_annotations,
num_proc=os.cpu_count() - 1,
)
if do_spelling_correction:
spell_checked_conversations_ds = (
conversations_ds_without_whatsapp_annotations.map(spell_check_conversation)
)
else:
spell_checked_conversations_ds = conversations_ds_without_whatsapp_annotations
if do_reordering:
reordered_conversations_ds = spell_checked_conversations_ds.map(
swap_messages_if_needed_in_conversation
)
else:
reordered_conversations_ds = spell_checked_conversations_ds
# For the contact_name, rewrite everything that is not 'my_whatsapp_name' to 'Other'
def rewrite_contact_name(conversation):
for message in conversation["conversations"]:
if message["contact_name"] != whatsapp_name:
message["contact_name"] = "Other"
return conversation
changed_contact_name_ds = reordered_conversations_ds.map(
rewrite_contact_name
) # , num_proc=os.cpu_count() - 1)
# Filter out conversations with only one contact
changed_contact_name_ds = changed_contact_name_ds.filter(
lambda x: len(set([msg["contact_name"] for msg in x["conversations"]])) > 1
)
return changed_contact_name_ds
SPLIT_CONVERSATION_THRESHOLD = 40
MAX_CHARACTERS_PER_MESSAGE = 10000 # Max is 8,192 tokens (https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-supervised-tuning-about#sample-datasets)
def transform_conversations_dataset_into_training_examples(
conversations_ds, system_prompt, user_role, model_role, whatsapp_name
):
"""
Takes in a dataset with conversations and returns a dataset with training examples.
The input dataset contains a single column (conversations), with each row being a list of messages with this format:
```
[{'contact_name': 'Aldi', 'message': <message>, 'timestamp': <time>}, {'contact_name': 'Other', 'message': <message>, 'timestamp': <time>}, ... ]
```
Each row will be converted to fit the format of the training examples.
The training examples have the following format:
```
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "William Shakespeare"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "384,400 kilometers"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}
```
"""
def process_examples(examples):
processed_examples = []
for conversation in examples["conversations"]:
messages = [{"role": "system", "content": [system_prompt]}]
counter = 0
for msg in conversation:
converted_role = (
model_role if msg["contact_name"] == whatsapp_name else user_role
)
if (
counter > SPLIT_CONVERSATION_THRESHOLD
and converted_role == user_role
):
processed_examples.append(
{
"messages": [
{
"role": m["role"],
"content": json.dumps(
m["content"], ensure_ascii=False
),
}
for m in messages
]
}
)
messages = [{"role": "system", "content": [system_prompt]}]
counter = 0
if converted_role == messages[-1]["role"]:
messages[-1]["content"] += [msg["message"]]
else:
messages.append(
{"role": converted_role, "content": [msg["message"]]}
)
counter += 1
if len(messages) >= MIN_MESSAGES_THRESHOLD:
processed_examples.append(
{
"messages": [
{
"role": m["role"],
"content": json.dumps(m["content"], ensure_ascii=False),
}
for m in messages
]
}
)
else:
logger.warning(
f"Discarding conversation because the length is not at least {MIN_MESSAGES_THRESHOLD}: {messages}"
)
# Before returning, flatten the list of dictionaries into a dictionary of lists
flattened_examples = {}
for key in processed_examples[0].keys():
flattened_examples[key] = [d[key] for d in processed_examples]
return flattened_examples
processed_examples = conversations_ds.map(
process_examples,
remove_columns=["conversations"],
# num_proc=os.cpu_count() - 1,
batched=True,
)
examples_filtered_by_length = processed_examples.filter(
lambda x: all(
[len(m["content"]) < MAX_CHARACTERS_PER_MESSAGE for m in x["messages"]]
)
)
return examples_filtered_by_length
|