File size: 15,345 Bytes
7e73556
 
bd73a7b
 
7e73556
bd73a7b
 
7e73556
bd73a7b
 
7e73556
 
 
 
bf9e30f
 
 
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
 
7e73556
 
 
 
bf9e30f
7e73556
bf9e30f
7e73556
 
 
 
 
 
 
bd73a7b
7e73556
 
 
 
bd73a7b
7e73556
 
 
 
bd73a7b
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
 
 
7e73556
 
bd73a7b
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
 
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
7e73556
 
 
 
 
 
 
bd73a7b
7e73556
 
 
bd73a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9e30f
 
 
 
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
 
 
 
 
 
 
7e73556
 
 
 
 
 
 
 
 
 
 
 
bf9e30f
 
 
 
7e73556
bf9e30f
7e73556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9e30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73a7b
 
 
 
bf9e30f
 
 
 
 
 
 
 
7e73556
bf9e30f
 
 
 
 
 
 
 
7e73556
bf9e30f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import datetime
import json
import logging
import os
import re
import datasets
import dateutil.parser

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# %%
# Now, create message groups ('conversations')
# The idea is to group messages that are close in time
# We'll use a 180 minute threshold
MINUTES_THRESHOLD = 180
MIN_MESSAGES_THRESHOLD = 5


def group_messages(messages_iterable):
    groups = []
    current_group = [next(messages_iterable)]
    for message in messages_iterable:
        assert len(current_group) > 0  # We should never have an empty group
        if (
            message["timestamp"] - current_group[-1]["timestamp"]
            < MINUTES_THRESHOLD * 60
        ):
            current_group.append(message)
        else:
            groups.append(current_group)
            current_group = [message]
    groups.append(current_group)
    return groups


def printable_conversation(conversation):
    return "\n".join(
        [f"{message['contact_name']}: {message['message']}" for message in conversation]
    )


import contextualSpellCheck

# %%
# Use spacy to spell check the messages
import spacy
from spellchecker import SpellChecker

spell = SpellChecker()
# nlp = spacy.load("es_core_news_sm")
nlp = spacy.load("en_core_web_sm")


def spell_check_conversation(conversation):
    for i, message in enumerate(conversation["conversations"]):
        # Use SpaCy to get the words
        words = spell.split_words(message["message"])
        logger.info(f"Words: {words}")
        corrected_message = []
        for word in words:
            correction = spell.correction(word)
            if (correction != None) and (correction != word):
                logger.info(f"Spell check: {word} -> {correction}")
                corrected_message.append(correction)
            else:
                corrected_message.append(word)

        logger.info(f"Corrected message: {corrected_message}")
        joined_message = " ".join(corrected_message)
        conversation["conversations"][i]["message"] = joined_message

    return conversation


def spell_check_conversation_spacy(conversation):

    nlp.add_pipe(
        "contextual spellchecker",
        config={
            "model_name": "bert-base-multilingual-uncased",
            "max_edit_dist": 2,
        },
    )
    docs = list(nlp.pipe([msg["message"] for msg in conversation["conversations"]]))
    for i, doc in enumerate(docs):
        if doc._.performed_spellCheck:
            logger.info(f"Spell checked: {doc.text} -> {doc._.outcome_spellCheck}")
            conversation["conversations"][i]["message"] = doc._.outcome_spellCheck

    return conversation


def remove_whatapp_annotations(conversation):
    """
    Removes the following annotations from the messages:
    - <This message was edited>
    """
    for message in conversation["conversations"]:
        message["message"] = re.sub(
            r"<This message was edited>", "", message["message"]
        )
    return conversation


# %%
"""
Sometimes, people write concurrently in the same conversation. We'll try to detect that and reorder the messages.
For example, if we have a conversation like this:
A: Hi
A: How are you?
B: Hi
B: I'm fine, thanks
A: I'm fine too
We'll reorder it to:
A: Hi
B: Hi
A: How are you?
B: I'm fine, thanks
A: I'm fine too

To do it, we'll use MobileBERT with the next sentence prediction head. We'll use the first message as the first sentence, and the second message as the second sentence. If the model predicts that the second sentence is more likely to be the next sentence, we'll swap the messages.
"""

import torch
from transformers import AutoModelForNextSentencePrediction, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForNextSentencePrediction.from_pretrained("bert-base-uncased")
if torch.cuda.is_available():
    model.cuda()


def swap_messages_if_needed(message1, message2):
    # If the messages have the same contact, we don't swap them
    if message1["contact_name"] == message2["contact_name"]:
        return message1, message2
    # The timestamp must have a difference of less than 2 minutes. First, convert to datetime
    datetime1 = datetime.datetime.fromtimestamp(message1["timestamp"])
    datetime2 = datetime.datetime.fromtimestamp(message2["timestamp"])
    if (datetime2 - datetime1).total_seconds() > 2 * 60:
        return message1, message2
    # If one of the messages has less than 3 words, we don't swap them
    if len(message1["message"].split()) < 3 or len(message2["message"].split()) < 3:
        return message1, message2
    # We'll use the first message as the first sentence, and the second message as the second sentence
    inputs = tokenizer(message1["message"], message2["message"], return_tensors="pt")
    reverse_inputs = tokenizer(
        message2["message"], message1["message"], return_tensors="pt"
    )
    # Join them in a single batch
    joined_inputs = torch.cat([inputs["input_ids"], reverse_inputs["input_ids"]], dim=0)
    if torch.cuda.is_available():
        joined_inputs = joined_inputs.cuda()
    with torch.no_grad():
        outputs = model(input_ids=joined_inputs)
    # The output is a tuple with the logits for each class (next sentence or not)
    # We'll take the first one (next sentence)
    logits = outputs[0]
    # Apply softmax
    logits = torch.softmax(logits, dim=1)
    # We have two probabilities: the probability of 1 -> 2, and the probability of 2 -> 1
    # We'll take the difference
    swap = logits[0, 0] - logits[1, 0] < -0.2
    if swap:
        # Swap the messages
        logger.info(
            f"Swapping messages: {message1['message']} <-> {message2['message']}"
        )
        return message2, message1
    else:
        # logger.info(f"NOT swapping messages: {message1['message']} <-> {message2['message']}")
        return message1, message2


def swap_messages_if_needed_in_conversation(conversation):
    # We'll use the first message as the first sentence, and the second message as the second sentence
    if len(conversation) <= 2:
        return conversation
    new_conversation = [
        conversation[0],
        conversation[1],
    ]  # We'll always keep the first message in the same position
    for i in range(2, len(conversation)):
        message1 = new_conversation[-1]
        message2 = conversation[i]
        message1, message2 = swap_messages_if_needed(message1, message2)
        new_conversation[-1] = message1
        new_conversation.append(message2)

    # logger.info(f"\nOriginal conversation:\n{printable_conversation(conversation)}")
    # logger.info(f"\nNew conversation:\n{printable_conversation(new_conversation)}")
    return new_conversation


test_conversation = [
    {"message": "Hola!", "contact_name": "A", "timestamp": 1},
    {
        "message": "Está todo bien, gracias por preguntar!",
        "contact_name": "B",
        "timestamp": 2,
    },
    {
        "message": "Hola, qué tal estás? Espero que vaya todo bien por España.",
        "contact_name": "A",
        "timestamp": 3,
    },
]
# logger.info(swap_messages_if_needed_in_conversation(test_conversation))

# %%
# Now, we'll train an mT5 model to generate the next message in a conversation
import os


# %%
def process_chat_file(file, do_spelling_correction, whatsapp_name, datetime_dayfirst, message_line_format, do_reordering=False):
    """
    Process a chat file and return a dataset with the conversations.
    """
    exp = re.compile(
        # r"(?P<msg_datetime>.+?) - (?P<contact_name>.+): (?P<message>.+)"
        # r"\[?(?P<msg_datetime>\S+,\s\S+?(?:\s[APap][Mm])?)\]? (?:- )?(?P<contact_name>.+): (?P<message>.+)"
        message_line_format
    )

    def process_line(example):
        # The lines have this format: dd/mm/yy, hh:mm - <person>: <msg>
        try:
            groups = exp.match(example["text"]).groupdict()
            timestamp = dateutil.parser.parse(groups['msg_datetime'], dayfirst=datetime_dayfirst).timestamp()
            return {
                "message": groups["message"],
                "contact_name": groups["contact_name"],
                "timestamp": timestamp,
            }
        except Exception as e:
            logger.exception(example["text"])
            raise e

    ds = (
        datasets.load_dataset("text", data_files=[file])["train"]
        .filter(
            # Has to begin by date, time, contact name, and contain at least a ':' symbol
            lambda x: re.match(
                r"^\d{1,2}/\d{1,2}/\d{1,2},\s\d{2}:\d{2}\s-\s.+:", x["text"]
            )
        )
        .map(process_line, remove_columns=["text"])
    )

    # Filter out messages that just say '<Media omitted>'
    ds = ds.filter(lambda x: x["message"] != "<Media omitted>")

    groups = group_messages(iter(ds))
    # Generate the dataset
    conversations_ds = datasets.Dataset.from_dict({"conversations": groups})

    # Filter out conversations with less than 5 messages
    conversations_ds = conversations_ds.filter(
        lambda x: len(x["conversations"]) >= MIN_MESSAGES_THRESHOLD
    )

    conversations_ds_without_whatsapp_annotations = conversations_ds.map(
        remove_whatapp_annotations,
        num_proc=os.cpu_count() - 1,
    )

    if do_spelling_correction:
        spell_checked_conversations_ds = (
            conversations_ds_without_whatsapp_annotations.map(spell_check_conversation)
        )
    else:
        spell_checked_conversations_ds = conversations_ds_without_whatsapp_annotations

    if do_reordering:
        reordered_conversations_ds = spell_checked_conversations_ds.map(
            swap_messages_if_needed_in_conversation
        )
    else:
        reordered_conversations_ds = spell_checked_conversations_ds

    # For the contact_name, rewrite everything that is not 'my_whatsapp_name' to 'Other'
    def rewrite_contact_name(conversation):
        for message in conversation["conversations"]:
            if message["contact_name"] != whatsapp_name:
                message["contact_name"] = "Other"
        return conversation

    changed_contact_name_ds = reordered_conversations_ds.map(
        rewrite_contact_name
    )  # , num_proc=os.cpu_count() - 1)

    # Filter out conversations with only one contact
    changed_contact_name_ds = changed_contact_name_ds.filter(
        lambda x: len(set([msg["contact_name"] for msg in x["conversations"]])) > 1
    )

    return changed_contact_name_ds


SPLIT_CONVERSATION_THRESHOLD = 40
MAX_CHARACTERS_PER_MESSAGE = 10000  # Max is 8,192 tokens (https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-supervised-tuning-about#sample-datasets)


def transform_conversations_dataset_into_training_examples(
    conversations_ds, system_prompt, user_role, model_role, whatsapp_name
):
    """
    Takes in a dataset with conversations and returns a dataset with training examples.

    The input dataset contains a single column (conversations), with each row being a list of messages with this format:
    ```
    [{'contact_name': 'Aldi', 'message': <message>, 'timestamp': <time>}, {'contact_name': 'Other', 'message': <message>, 'timestamp': <time>}, ... ]
    ```

    Each row will be converted to fit the format of the training examples.

    The training examples have the following format:
    ```
    {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
    {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "William Shakespeare"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
    {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "384,400 kilometers"}, {"role": "user", "content": "Can you be more sarcastic?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}
    ```
    """

    def process_examples(examples):
        processed_examples = []
        for conversation in examples["conversations"]:
            messages = [{"role": "system", "content": [system_prompt]}]
            counter = 0
            for msg in conversation:
                converted_role = (
                    model_role if msg["contact_name"] == whatsapp_name else user_role
                )
                if (
                    counter > SPLIT_CONVERSATION_THRESHOLD
                    and converted_role == user_role
                ):
                    processed_examples.append(
                        {
                            "messages": [
                                {
                                    "role": m["role"],
                                    "content": json.dumps(
                                        m["content"], ensure_ascii=False
                                    ),
                                }
                                for m in messages
                            ]
                        }
                    )
                    messages = [{"role": "system", "content": [system_prompt]}]
                    counter = 0
                if converted_role == messages[-1]["role"]:
                    messages[-1]["content"] += [msg["message"]]
                else:
                    messages.append(
                        {"role": converted_role, "content": [msg["message"]]}
                    )
                counter += 1
            if len(messages) >= MIN_MESSAGES_THRESHOLD:
                processed_examples.append(
                    {
                        "messages": [
                            {
                                "role": m["role"],
                                "content": json.dumps(m["content"], ensure_ascii=False),
                            }
                            for m in messages
                        ]
                    }
                )
            else:
                logger.warning(
                    f"Discarding conversation because the length is not at least {MIN_MESSAGES_THRESHOLD}: {messages}"
                )
        # Before returning, flatten the list of dictionaries into a dictionary of lists
        flattened_examples = {}
        for key in processed_examples[0].keys():
            flattened_examples[key] = [d[key] for d in processed_examples]
        return flattened_examples

    processed_examples = conversations_ds.map(
        process_examples,
        remove_columns=["conversations"],
        # num_proc=os.cpu_count() - 1,
        batched=True,
    )

    examples_filtered_by_length = processed_examples.filter(
        lambda x: all(
            [len(m["content"]) < MAX_CHARACTERS_PER_MESSAGE for m in x["messages"]]
        )
    )

    return examples_filtered_by_length