import os from typing import List from chainlit.types import AskFileResponse from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) # from aimakerspace.openai_utils.embedding import EmbeddingModel # from aimakerspace.vectordatabase import VectorDatabase from langchain_openai import ChatOpenAI # from aimakerspace.openai_utils.chatmodel import ChatOpenAI import chainlit as cl from langchain_text_splitters import RecursiveCharacterTextSplitter # from langchain_experimental.text_splitter import SemanticChunker # from langchain_openai.embeddings import OpenAIEmbeddings from sentence_transformers import SentenceTransformer from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai.embeddings import OpenAIEmbeddings from langchain_core.documents import Document from dotenv import load_dotenv # from langchain.chains import RetrievalQA load_dotenv() system_template = """\ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" system_role_prompt = SystemRolePrompt(system_template) user_prompt_template = """\ Context: {context} Question: {question} """ user_role_prompt = UserRolePrompt(user_prompt_template) # class RetrievalAugmentedQAPipeline: # def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: # self.llm = llm # self.vector_db_retriever = vector_db_retriever # async def arun_pipeline(self, user_query: str): # context_list = self.vector_db_retriever.search_by_text(user_query, k=4) # context_prompt = "" # for context in context_list: # context_prompt += context[0] + "\n" # formatted_system_prompt = system_role_prompt.create_message() # formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) # async def generate_response(): # async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): # yield chunk # return {"response": generate_response(), "context": context_list} text_splitter = RecursiveCharacterTextSplitter() def process_text_file(file: AskFileResponse): import tempfile from langchain_community.document_loaders.pdf import PyPDFLoader with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=file.name) as temp_file: temp_file_path = temp_file.name with open(temp_file_path, "wb") as f: f.write(file.content) if file.type == 'text/plain': text_loader = TextFileLoader(temp_file_path) documents = text_loader.load_documents() elif file.type == 'application/pdf': pdf_loader = PyPDFLoader(temp_file_path) documents = pdf_loader.load() else: raise ValueError("Provide a .txt or .pdf file") #texts = [x.page_content for x in text_splitter.transform_documents(documents)] # texts = [x.page_content for x in text_splitter.split_documents(documents)] return text_splitter.split_documents(documents) @cl.on_chat_start async def on_chat_start(): files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a Text file or a PDF to begin!", accept=["text/plain", "application/pdf"], max_size_mb=12, timeout=180, max_files=10 ).send() processed_documents = [] for file in files: msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file texts = process_text_file(file) processed_documents.extend(texts) print(f"Processing {len(texts)} text chunks") # Create a dict vector store # vector_db = VectorDatabase() # vector_db = await vector_db.abuild_from_list(texts) # chat_openai = ChatOpenAI() # Create a chain # retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( # vector_db_retriever=vector_db, # llm=chat_openai # ) # model = SentenceTransformer("acpotts/finetuned_arctic") finetune_embeddings = HuggingFaceEmbeddings(model_name='acpotts/finetuned_arctic') finetune_vectorstore = FAISS.from_documents(processed_documents, finetune_embeddings) finetune_retriever = finetune_vectorstore.as_retriever(search_kwargs={"k": 6}) from operator import itemgetter from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough, RunnableParallel rag_llm = ChatOpenAI( model="gpt-4o-mini", temperature=0 ) finetune_rag_chain = ( {"context": itemgetter("question") | finetune_retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | {"response": system_template | rag_llm | StrOutputParser(), "context": itemgetter("context")} ) # Let the user know that the system is ready msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", finetune_rag_chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") msg = cl.Message(content="") # finetune_rag_chain.invoke({"question": message.content}) # result = await chain.arun_pipeline(message.content) result = await chain.arun_pipeline({'question': message.content}) async for stream_resp in result["response"]: await msg.stream_token(stream_resp) await msg.send()