diffusion / generate.py
adamelliotfields's picture
Performance improvements
1128e78 verified
raw
history blame
7.26 kB
import re
from datetime import datetime
from itertools import product
from os import environ
from warnings import filterwarnings
import spaces
import torch
from compel import Compel
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
)
from diffusers.models import AutoencoderTiny
ZERO_GPU = (
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
or environ.get("SPACES_ZERO_GPU", "") == "1"
)
TORCH_DTYPE = (
torch.bfloat16
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else torch.float16
)
# some models use the deprecated CLIPFeatureExtractor class
# should use CLIPImageProcessor instead
filterwarnings("ignore", category=FutureWarning, module="transformers")
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.cpu = torch.device("cpu")
cls._instance.gpu = torch.device("cuda")
cls._instance.pipe = None
return cls._instance
def load(self, model, scheduler, karras):
model_lower = model.lower()
schedulers = {
"DEIS 2M": DEISMultistepScheduler,
"DPM++ 2M": DPMSolverMultistepScheduler,
"DPM2 a": KDPM2AncestralDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
"LMS": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
"use_karras_sigmas": karras,
}
if scheduler == "PNDM" or scheduler == "Euler a":
del scheduler_kwargs["use_karras_sigmas"]
pipe_kwargs = {
"pretrained_model_name_or_path": model_lower,
"requires_safety_checker": False,
"safety_checker": None,
"scheduler": schedulers[scheduler](**scheduler_kwargs),
"torch_dtype": TORCH_DTYPE,
"use_safetensors": True,
}
# already loaded
if self.pipe is not None:
model_name = self.pipe.config._name_or_path
same_model = model_name.lower() == model_lower
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
if same_model:
if not same_scheduler:
print(f"Swapping scheduler to {scheduler}...")
elif not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
elif not (same_scheduler and same_karras):
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
return self.pipe
else:
print(f"Unloading {model_name.lower()}...")
self.pipe = None
torch.cuda.empty_cache()
# no fp16 available
if not ZERO_GPU and model_lower not in [
"sg161222/realistic_vision_v5.1_novae",
"prompthero/openjourney-v4",
"linaqruf/anything-v3-1",
]:
pipe_kwargs["variant"] = "fp16"
# uses special VAE
if model_lower not in ["linaqruf/anything-v3-1"]:
pipe_kwargs["vae"] = AutoencoderTiny.from_pretrained(
"madebyollin/taesd",
torch_dtype=TORCH_DTYPE,
use_safetensors=True,
)
print(f"Loading {model_lower}...")
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
return self.pipe
# prepare prompts for Compel
def join_prompt(prompt: str) -> str:
lines = prompt.strip().splitlines()
return '("' + '", "'.join(lines) + '").and()' if len(lines) > 1 else prompt
# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
joined_prompt = join_prompt(prompt)
arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)
if not arrays:
return [joined_prompt]
tokens = [item.split(",") for item in arrays]
combinations = list(product(*tokens))
prompts = []
for combo in combinations:
current_prompt = joined_prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
@spaces.GPU(duration=30)
def generate(
positive_prompt,
negative_prompt="",
seed=None,
model="lykon/dreamshaper-8",
scheduler="DEIS 2M",
aspect_ratio="1:1",
guidance_scale=7.5,
inference_steps=30,
karras=True,
num_images=1,
increment_seed=True,
Error=Exception,
):
if not torch.cuda.is_available():
raise Error("CUDA not available")
# image dimensions
aspect_ratios = {
"16:9": (640, 360),
"4:3": (576, 432),
"1:1": (512, 512),
"3:4": (432, 576),
"9:16": (360, 640),
}
width, height = aspect_ratios[aspect_ratio]
with torch.inference_mode():
loader = Loader()
pipe = loader.load(model, scheduler, karras)
# prompt embeds
compel = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
device=pipe.device,
dtype_for_device_getter=lambda _: TORCH_DTYPE,
)
neg_prompt = join_prompt(negative_prompt)
neg_embeds = compel(neg_prompt)
if seed is None:
seed = int(datetime.now().timestamp())
current_seed = seed
images = []
for i in range(num_images):
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
# run the prompt for this iteration
all_positive_prompts = parse_prompt(positive_prompt)
prompt_index = i % len(all_positive_prompts)
pos_prompt = all_positive_prompts[prompt_index]
pos_embeds = compel(pos_prompt)
pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
[pos_embeds, neg_embeds]
)
result = pipe(
width=width,
height=height,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=generator,
)
images.append((result.images[0], str(current_seed)))
if increment_seed:
current_seed += 1
if ZERO_GPU:
# spaces always start fresh
loader.pipe = None
return images