Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import torch | |
from DeepCache import DeepCacheSDHelper | |
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionPipeline | |
from diffusers.models import AutoencoderKL, AutoencoderTiny | |
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0 | |
from torch._dynamo import OptimizedModule | |
from .config import Config | |
from .upscaler import RealESRGAN | |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers") | |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="torch") | |
__import__("diffusers").logging.set_verbosity_error() | |
class Loader: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super(Loader, cls).__new__(cls) | |
cls._instance.pipe = None | |
cls._instance.model = None | |
cls._instance.upscaler = None | |
cls._instance.ip_adapter = None | |
return cls._instance | |
def _should_unload_upscaler(self, scale=1): | |
return self.upscaler is not None and scale == 1 | |
def _should_unload_ip_adapter(self, ip_adapter=""): | |
return self.ip_adapter is not None and not ip_adapter | |
def _should_unload_pipeline(self, kind="", model=""): | |
if self.pipe is None: | |
return False | |
if self.model.lower() != model.lower(): | |
return True | |
if kind == "txt2img" and not isinstance(self.pipe, StableDiffusionPipeline): | |
return True # txt2img -> img2img | |
if kind == "img2img" and not isinstance(self.pipe, StableDiffusionImg2ImgPipeline): | |
return True # img2img -> txt2img | |
return False | |
# https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300 | |
def _unload_ip_adapter(self): | |
print("Unloading IP Adapter...") | |
if not isinstance(self.pipe, StableDiffusionImg2ImgPipeline): | |
self.pipe.image_encoder = None | |
self.pipe.register_to_config(image_encoder=[None, None]) | |
self.pipe.feature_extractor = None | |
self.pipe.unet.encoder_hid_proj = None | |
self.pipe.unet.config.encoder_hid_dim_type = None | |
self.pipe.register_to_config(feature_extractor=[None, None]) | |
attn_procs = {} | |
for name, value in self.pipe.unet.attn_processors.items(): | |
attn_processor_class = AttnProcessor2_0() # raises if not torch 2 | |
attn_procs[name] = ( | |
attn_processor_class | |
if isinstance(value, IPAdapterAttnProcessor2_0) | |
else value.__class__() | |
) | |
self.pipe.unet.set_attn_processor(attn_procs) | |
def _unload(self, kind="", model="", ip_adapter="", scale=1): | |
to_unload = [] | |
if self._should_unload_upscaler(scale): | |
to_unload.append("upscaler") | |
if self._should_unload_ip_adapter(ip_adapter): | |
self._unload_ip_adapter() | |
to_unload.append("ip_adapter") | |
if self._should_unload_pipeline(kind, model): | |
to_unload.append("model") | |
to_unload.append("pipe") | |
for component in to_unload: | |
delattr(self, component) | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
for component in to_unload: | |
setattr(self, component, None) | |
def _load_ip_adapter(self, ip_adapter=""): | |
if self.ip_adapter is None and ip_adapter: | |
print(f"Loading IP Adapter: {ip_adapter}...") | |
self.pipe.load_ip_adapter( | |
"h94/IP-Adapter", | |
subfolder="models", | |
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors", | |
) | |
# 50% works the best | |
self.pipe.set_ip_adapter_scale(0.5) | |
self.ip_adapter = ip_adapter | |
def _load_upscaler(self, device=None, scale=1): | |
if scale > 1 and self.upscaler is None: | |
print(f"Loading {scale}x upscaler...") | |
self.upscaler = RealESRGAN(device=device, scale=scale) | |
self.upscaler.load_weights() | |
def _load_pipeline(self, kind, model, device, **kwargs): | |
pipeline = Config.PIPELINES[kind] | |
if self.pipe is None: | |
print(f"Loading {model}...") | |
try: | |
if model.lower() in Config.MODEL_CHECKPOINTS.keys(): | |
self.pipe = pipeline.from_single_file( | |
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}", | |
**kwargs, | |
).to(device) | |
else: | |
self.pipe = pipeline.from_pretrained(model, **kwargs).to(device) | |
self.model = model | |
except Exception as e: | |
print(f"Error loading {model}: {e}") | |
self.model = None | |
self.pipe = None | |
return | |
if not isinstance(self.pipe, pipeline): | |
self.pipe = pipeline.from_pipe(self.pipe).to(device) | |
self.pipe.set_progress_bar_config(disable=True) | |
def _load_vae(self, taesd=False, model=""): | |
vae_type = type(self.pipe.vae) | |
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule)) | |
is_tiny = issubclass(vae_type, AutoencoderTiny) | |
# by default all models use KL | |
if is_kl and taesd: | |
print("Switching to Tiny VAE...") | |
self.pipe.vae = AutoencoderTiny.from_pretrained( | |
# can't compile tiny VAE | |
pretrained_model_name_or_path="madebyollin/taesd", | |
torch_dtype=self.pipe.dtype, | |
).to(self.pipe.device) | |
return | |
if is_tiny and not taesd: | |
print("Switching to KL VAE...") | |
if model.lower() in Config.MODEL_CHECKPOINTS.keys(): | |
vae = AutoencoderKL.from_single_file( | |
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}", | |
torch_dtype=self.pipe.dtype, | |
).to(self.pipe.device) | |
else: | |
vae = AutoencoderKL.from_pretrained( | |
pretrained_model_name_or_path=model, | |
torch_dtype=self.pipe.dtype, | |
subfolder="vae", | |
variant="fp16", | |
).to(self.pipe.device) | |
self.pipe.vae = torch.compile( | |
mode="reduce-overhead", | |
fullgraph=True, | |
model=vae, | |
) | |
def _load_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipe, "deepcache") | |
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval: | |
return | |
if has_deepcache: | |
self.pipe.deepcache.disable() | |
else: | |
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe) | |
self.pipe.deepcache.set_params(cache_interval=interval) | |
self.pipe.deepcache.enable() | |
# https://github.com/ChenyangSi/FreeU | |
def _load_freeu(self, freeu=False): | |
block = self.pipe.unet.up_blocks[0] | |
attrs = ["b1", "b2", "s1", "s2"] | |
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs) | |
if has_freeu and not freeu: | |
print("Disabling FreeU...") | |
self.pipe.disable_freeu() | |
elif not has_freeu and freeu: | |
print("Enabling FreeU...") | |
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2) | |
def load( | |
self, | |
kind, | |
ip_adapter, | |
model, | |
scheduler, | |
karras, | |
taesd, | |
freeu, | |
deepcache, | |
scale, | |
device, | |
): | |
scheduler_kwargs = { | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"steps_offset": 1, | |
} | |
if scheduler not in ["DDIM", "Euler a", "PNDM"]: | |
scheduler_kwargs["use_karras_sigmas"] = karras | |
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939 | |
if scheduler == "DDIM": | |
scheduler_kwargs["clip_sample"] = False | |
scheduler_kwargs["set_alpha_to_one"] = False | |
pipe_kwargs = { | |
"safety_checker": None, | |
"requires_safety_checker": False, | |
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs), | |
} | |
# diffusers fp16 variant | |
if model.lower() not in Config.MODEL_CHECKPOINTS.keys(): | |
pipe_kwargs["variant"] = "fp16" | |
else: | |
pipe_kwargs["variant"] = None | |
# convert fp32 to bf16/fp16 | |
if ( | |
model.lower() in ["linaqruf/anything-v3-1"] | |
and torch.cuda.get_device_properties(device).major >= 8 | |
): | |
pipe_kwargs["torch_dtype"] = torch.bfloat16 | |
else: | |
pipe_kwargs["torch_dtype"] = torch.float16 | |
self._unload(kind, model, ip_adapter, scale) | |
self._load_pipeline(kind, model, device, **pipe_kwargs) | |
# error loading model | |
if self.pipe is None: | |
return self.pipe, self.upscaler | |
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler]) | |
same_karras = ( | |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas") | |
or self.pipe.scheduler.config.use_karras_sigmas == karras | |
) | |
# same model, different scheduler | |
if self.model.lower() == model.lower(): | |
if not same_scheduler: | |
print(f"Switching to {scheduler}...") | |
if not same_karras: | |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...") | |
if not same_scheduler or not same_karras: | |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs) | |
self._load_upscaler(device, scale) | |
self._load_ip_adapter(ip_adapter) | |
self._load_vae(taesd, model) | |
self._load_freeu(freeu) | |
self._load_deepcache(deepcache) | |
return self.pipe, self.upscaler | |