Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Commit
•
b7fd57e
1
Parent(s):
c851587
Add ToMe
Browse files- app.py +61 -45
- generate.py +83 -64
- requirements.txt +4 -3
app.py
CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
|
|
4 |
|
5 |
from generate import generate
|
6 |
|
7 |
-
DEFAULT_NEGATIVE_PROMPT = "<
|
8 |
|
9 |
# base font stacks
|
10 |
MONO_FONTS = ["monospace"]
|
@@ -60,6 +60,7 @@ with gr.Blocks(
|
|
60 |
font=[gr.themes.GoogleFont("Inter"), *SANS_FONTS],
|
61 |
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *MONO_FONTS],
|
62 |
).set(
|
|
|
63 |
block_shadow="0 0 #0000",
|
64 |
block_shadow_dark="0 0 #0000",
|
65 |
block_background_fill=gr.themes.colors.gray.c50,
|
@@ -67,28 +68,49 @@ with gr.Blocks(
|
|
67 |
),
|
68 |
) as demo:
|
69 |
gr.HTML(read_file("./partials/intro.html"))
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
with gr.Accordion(
|
89 |
elem_classes=["accordion"],
|
90 |
elem_id="menu",
|
91 |
-
label="
|
92 |
open=False,
|
93 |
):
|
94 |
with gr.Tabs():
|
@@ -98,12 +120,12 @@ with gr.Blocks(
|
|
98 |
label="Negative Prompt",
|
99 |
value=DEFAULT_NEGATIVE_PROMPT,
|
100 |
placeholder="",
|
101 |
-
lines=
|
102 |
)
|
103 |
|
104 |
with gr.Row():
|
105 |
num_images = gr.Dropdown(
|
106 |
-
choices=
|
107 |
filterable=False,
|
108 |
label="Images",
|
109 |
value=1,
|
@@ -113,7 +135,7 @@ with gr.Blocks(
|
|
113 |
label="Width",
|
114 |
minimum=256,
|
115 |
maximum=1024,
|
116 |
-
value=
|
117 |
step=32,
|
118 |
scale=2,
|
119 |
)
|
@@ -121,7 +143,7 @@ with gr.Blocks(
|
|
121 |
label="Height",
|
122 |
minimum=256,
|
123 |
maximum=1024,
|
124 |
-
value=
|
125 |
step=32,
|
126 |
scale=2,
|
127 |
)
|
@@ -131,7 +153,7 @@ with gr.Blocks(
|
|
131 |
label="Guidance Scale",
|
132 |
minimum=1.0,
|
133 |
maximum=15.0,
|
134 |
-
value=7
|
135 |
step=0.1,
|
136 |
)
|
137 |
inference_steps = gr.Slider(
|
@@ -171,7 +193,7 @@ with gr.Blocks(
|
|
171 |
"PNDM",
|
172 |
],
|
173 |
)
|
174 |
-
seed = gr.Number(label="Seed", value=42)
|
175 |
|
176 |
with gr.Row():
|
177 |
use_karras = gr.Checkbox(
|
@@ -184,39 +206,33 @@ with gr.Blocks(
|
|
184 |
elem_classes=["checkbox"],
|
185 |
label="Autoincrement",
|
186 |
value=True,
|
187 |
-
scale=
|
188 |
-
)
|
189 |
-
random_seed_btn = gr.Button(
|
190 |
-
"🎲 Random seed",
|
191 |
-
variant="secondary",
|
192 |
-
size="sm",
|
193 |
-
scale=1,
|
194 |
)
|
195 |
|
196 |
with gr.TabItem("🛠️ Advanced"):
|
197 |
with gr.Group():
|
198 |
with gr.Row():
|
199 |
-
|
200 |
label="DeepCache Interval",
|
201 |
minimum=1,
|
202 |
maximum=4,
|
203 |
-
value=
|
204 |
-
step=1,
|
205 |
-
)
|
206 |
-
deep_cache_branch = gr.Slider(
|
207 |
-
label="DeepCache Branch",
|
208 |
-
minimum=0,
|
209 |
-
maximum=3,
|
210 |
-
value=0,
|
211 |
step=1,
|
212 |
)
|
213 |
tgate_step = gr.Slider(
|
214 |
label="T-GATE Step",
|
215 |
minimum=0,
|
216 |
maximum=50,
|
217 |
-
value=
|
218 |
step=1,
|
219 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
with gr.Row():
|
222 |
use_taesd = gr.Checkbox(
|
@@ -242,7 +258,7 @@ with gr.Blocks(
|
|
242 |
gr.Markdown(read_file("info.md"), elem_classes=["markdown"])
|
243 |
|
244 |
# update the random seed using JavaScript
|
245 |
-
|
246 |
|
247 |
# ensure correct argument order
|
248 |
generate_btn.click(
|
@@ -266,9 +282,9 @@ with gr.Blocks(
|
|
266 |
use_clip_skip,
|
267 |
truncate_prompts,
|
268 |
increment_seed,
|
269 |
-
|
270 |
-
deep_cache_branch,
|
271 |
tgate_step,
|
|
|
272 |
],
|
273 |
)
|
274 |
|
|
|
4 |
|
5 |
from generate import generate
|
6 |
|
7 |
+
DEFAULT_NEGATIVE_PROMPT = "<fast_negative>"
|
8 |
|
9 |
# base font stacks
|
10 |
MONO_FONTS = ["monospace"]
|
|
|
60 |
font=[gr.themes.GoogleFont("Inter"), *SANS_FONTS],
|
61 |
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *MONO_FONTS],
|
62 |
).set(
|
63 |
+
layout_gap="8px",
|
64 |
block_shadow="0 0 #0000",
|
65 |
block_shadow_dark="0 0 #0000",
|
66 |
block_background_fill=gr.themes.colors.gray.c50,
|
|
|
68 |
),
|
69 |
) as demo:
|
70 |
gr.HTML(read_file("./partials/intro.html"))
|
71 |
+
|
72 |
+
with gr.Group():
|
73 |
+
output_images = gr.Gallery(
|
74 |
+
elem_classes=["gallery"],
|
75 |
+
show_share_button=False,
|
76 |
+
interactive=False,
|
77 |
+
show_label=False,
|
78 |
+
label="Output",
|
79 |
+
format="png",
|
80 |
+
columns=2,
|
81 |
+
)
|
82 |
+
prompt = gr.Textbox(
|
83 |
+
placeholder="corgi, at the beach, cute, 8k",
|
84 |
+
show_label=False,
|
85 |
+
label="Prompt",
|
86 |
+
value=None,
|
87 |
+
lines=2,
|
88 |
+
)
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
generate_btn = gr.Button("Generate", variant="primary", scale=6, elem_classes=[])
|
92 |
+
random_btn = gr.Button(
|
93 |
+
elem_classes=["icon-button"],
|
94 |
+
variant="secondary",
|
95 |
+
elem_id="random",
|
96 |
+
min_width=0,
|
97 |
+
value="🎲",
|
98 |
+
scale=1,
|
99 |
+
)
|
100 |
+
clear_btn = gr.ClearButton(
|
101 |
+
elem_classes=["icon-button"],
|
102 |
+
components=[output_images],
|
103 |
+
variant="secondary",
|
104 |
+
elem_id="clear",
|
105 |
+
min_width=0,
|
106 |
+
value="🗑️",
|
107 |
+
scale=1,
|
108 |
+
)
|
109 |
|
110 |
with gr.Accordion(
|
111 |
elem_classes=["accordion"],
|
112 |
elem_id="menu",
|
113 |
+
label="Open menu",
|
114 |
open=False,
|
115 |
):
|
116 |
with gr.Tabs():
|
|
|
120 |
label="Negative Prompt",
|
121 |
value=DEFAULT_NEGATIVE_PROMPT,
|
122 |
placeholder="",
|
123 |
+
lines=2,
|
124 |
)
|
125 |
|
126 |
with gr.Row():
|
127 |
num_images = gr.Dropdown(
|
128 |
+
choices=list(range(1, 9)),
|
129 |
filterable=False,
|
130 |
label="Images",
|
131 |
value=1,
|
|
|
135 |
label="Width",
|
136 |
minimum=256,
|
137 |
maximum=1024,
|
138 |
+
value=448,
|
139 |
step=32,
|
140 |
scale=2,
|
141 |
)
|
|
|
143 |
label="Height",
|
144 |
minimum=256,
|
145 |
maximum=1024,
|
146 |
+
value=576,
|
147 |
step=32,
|
148 |
scale=2,
|
149 |
)
|
|
|
153 |
label="Guidance Scale",
|
154 |
minimum=1.0,
|
155 |
maximum=15.0,
|
156 |
+
value=7,
|
157 |
step=0.1,
|
158 |
)
|
159 |
inference_steps = gr.Slider(
|
|
|
193 |
"PNDM",
|
194 |
],
|
195 |
)
|
196 |
+
seed = gr.Number(label="Seed", value=42, scale=1)
|
197 |
|
198 |
with gr.Row():
|
199 |
use_karras = gr.Checkbox(
|
|
|
206 |
elem_classes=["checkbox"],
|
207 |
label="Autoincrement",
|
208 |
value=True,
|
209 |
+
scale=4,
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
)
|
211 |
|
212 |
with gr.TabItem("🛠️ Advanced"):
|
213 |
with gr.Group():
|
214 |
with gr.Row():
|
215 |
+
deepcache_interval = gr.Slider(
|
216 |
label="DeepCache Interval",
|
217 |
minimum=1,
|
218 |
maximum=4,
|
219 |
+
value=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
step=1,
|
221 |
)
|
222 |
tgate_step = gr.Slider(
|
223 |
label="T-GATE Step",
|
224 |
minimum=0,
|
225 |
maximum=50,
|
226 |
+
value=20,
|
227 |
step=1,
|
228 |
)
|
229 |
+
tome_ratio = gr.Slider(
|
230 |
+
label="ToMe Ratio",
|
231 |
+
minimum=0.0,
|
232 |
+
maximum=1.0,
|
233 |
+
value=0.0,
|
234 |
+
step=0.01,
|
235 |
+
)
|
236 |
|
237 |
with gr.Row():
|
238 |
use_taesd = gr.Checkbox(
|
|
|
258 |
gr.Markdown(read_file("info.md"), elem_classes=["markdown"])
|
259 |
|
260 |
# update the random seed using JavaScript
|
261 |
+
random_btn.click(None, outputs=[seed], js="() => Math.floor(Math.random() * 2**32)")
|
262 |
|
263 |
# ensure correct argument order
|
264 |
generate_btn.click(
|
|
|
282 |
use_clip_skip,
|
283 |
truncate_prompts,
|
284 |
increment_seed,
|
285 |
+
deepcache_interval,
|
|
|
286 |
tgate_step,
|
287 |
+
tome_ratio,
|
288 |
],
|
289 |
)
|
290 |
|
generate.py
CHANGED
@@ -7,6 +7,7 @@ from types import MethodType
|
|
7 |
from warnings import filterwarnings
|
8 |
|
9 |
import spaces
|
|
|
10 |
import torch
|
11 |
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
|
12 |
from DeepCache import DeepCacheSDHelper
|
@@ -54,27 +55,63 @@ class Loader:
|
|
54 |
cls._instance.pipe = None
|
55 |
return cls._instance
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
# can't compile tiny VAE
|
60 |
-
|
|
|
61 |
pretrained_model_name_or_path="madebyollin/taesd",
|
62 |
use_safetensors=True,
|
63 |
torch_dtype=dtype,
|
64 |
).to(self.gpu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
fullgraph=True,
|
68 |
-
mode="reduce-overhead",
|
69 |
-
model=AutoencoderKL.from_pretrained(
|
70 |
-
pretrained_model_name_or_path=model_name,
|
71 |
-
use_safetensors=True,
|
72 |
-
torch_dtype=dtype,
|
73 |
-
subfolder="vae",
|
74 |
-
).to(self.gpu),
|
75 |
-
)
|
76 |
-
|
77 |
-
def load(self, model, scheduler, karras, taesd, dtype=None):
|
78 |
model_lower = model.lower()
|
79 |
|
80 |
schedulers = {
|
@@ -126,13 +163,9 @@ class Loader:
|
|
126 |
if not same_scheduler or not same_karras:
|
127 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
issubclass(vae_type, AutoencoderTiny) and not taesd
|
133 |
-
):
|
134 |
-
print(f"Switching to {'Tiny' if taesd else 'KL'} VAE...")
|
135 |
-
self.pipe.vae = self._load_vae(model_lower, taesd, dtype)
|
136 |
return self.pipe
|
137 |
else:
|
138 |
print(f"Unloading {model_name.lower()}...")
|
@@ -149,7 +182,9 @@ class Loader:
|
|
149 |
|
150 |
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
151 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
152 |
-
self.
|
|
|
|
|
153 |
self.pipe.load_textual_inversion(
|
154 |
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
155 |
tokens=list(EMBEDDINGS.values()),
|
@@ -157,26 +192,15 @@ class Loader:
|
|
157 |
return self.pipe
|
158 |
|
159 |
|
|
|
160 |
@contextmanager
|
161 |
-
def
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
pipe.deepcache = helper
|
169 |
-
pipe.tgate = MethodType(tgate_sd_deepcache, pipe)
|
170 |
-
|
171 |
-
try:
|
172 |
-
yield helper
|
173 |
-
finally:
|
174 |
-
helper.disable()
|
175 |
-
elif interval < 2 and tgate_step > 0:
|
176 |
-
pipe.tgate = MethodType(tgate_sd, pipe)
|
177 |
-
yield None
|
178 |
-
else:
|
179 |
-
yield None
|
180 |
|
181 |
|
182 |
# parse prompts with arrays
|
@@ -194,7 +218,6 @@ def parse_prompt(prompt: str) -> list[str]:
|
|
194 |
current_prompt = prompt
|
195 |
for i, token in enumerate(combo):
|
196 |
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
|
197 |
-
|
198 |
prompts.append(current_prompt)
|
199 |
return prompts
|
200 |
|
@@ -216,9 +239,9 @@ def generate(
|
|
216 |
clip_skip=False,
|
217 |
truncate_prompts=False,
|
218 |
increment_seed=True,
|
219 |
-
|
220 |
-
deep_cache_branch=0,
|
221 |
tgate_step=0,
|
|
|
222 |
Error=Exception,
|
223 |
):
|
224 |
if not torch.cuda.is_available():
|
@@ -241,7 +264,7 @@ def generate(
|
|
241 |
|
242 |
with torch.inference_mode():
|
243 |
loader = Loader()
|
244 |
-
pipe = loader.load(model, scheduler, karras, taesd,
|
245 |
|
246 |
# prompt embeds
|
247 |
compel = Compel(
|
@@ -271,25 +294,21 @@ def generate(
|
|
271 |
[pos_embeds, neg_embeds]
|
272 |
)
|
273 |
|
274 |
-
with
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
result = (
|
290 |
-
pipe.tgate(**pipe_kwargs, gate_step=tgate_step)
|
291 |
-
if tgate_step > 0
|
292 |
-
else pipe(**pipe_kwargs)
|
293 |
)
|
294 |
images.append((result.images[0], str(current_seed)))
|
295 |
|
|
|
7 |
from warnings import filterwarnings
|
8 |
|
9 |
import spaces
|
10 |
+
import tomesd
|
11 |
import torch
|
12 |
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
|
13 |
from DeepCache import DeepCacheSDHelper
|
|
|
55 |
cls._instance.pipe = None
|
56 |
return cls._instance
|
57 |
|
58 |
+
def _load_deepcache(self, interval=1):
|
59 |
+
has_deepcache = hasattr(self.pipe, "deepcache")
|
60 |
+
|
61 |
+
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
|
62 |
+
return self.pipe.deepcache
|
63 |
+
if has_deepcache:
|
64 |
+
self.pipe.deepcache.disable()
|
65 |
+
else:
|
66 |
+
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
|
67 |
+
|
68 |
+
self.pipe.deepcache.set_params(cache_interval=interval)
|
69 |
+
self.pipe.deepcache.enable()
|
70 |
+
return self.pipe.deepcache
|
71 |
+
|
72 |
+
def _load_tgate(self):
|
73 |
+
has_tgate = hasattr(self.pipe, "tgate")
|
74 |
+
has_deepcache = hasattr(self.pipe, "deepcache")
|
75 |
+
|
76 |
+
if not has_tgate:
|
77 |
+
self.pipe.tgate = MethodType(
|
78 |
+
tgate_sd_deepcache if has_deepcache else tgate_sd,
|
79 |
+
self.pipe,
|
80 |
+
)
|
81 |
+
|
82 |
+
return self.pipe.tgate
|
83 |
+
|
84 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
85 |
+
vae_type = type(self.pipe.vae)
|
86 |
+
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
|
87 |
+
is_tiny = issubclass(vae_type, AutoencoderTiny)
|
88 |
+
|
89 |
+
# by default all models use KL
|
90 |
+
if is_kl and taesd:
|
91 |
# can't compile tiny VAE
|
92 |
+
print("Switching to Tiny VAE...")
|
93 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
94 |
pretrained_model_name_or_path="madebyollin/taesd",
|
95 |
use_safetensors=True,
|
96 |
torch_dtype=dtype,
|
97 |
).to(self.gpu)
|
98 |
+
return self.pipe.vae
|
99 |
+
|
100 |
+
if is_tiny and not taesd:
|
101 |
+
print("Switching to KL VAE...")
|
102 |
+
self.pipe.vae = torch.compile(
|
103 |
+
fullgraph=True,
|
104 |
+
mode="reduce-overhead",
|
105 |
+
model=AutoencoderKL.from_pretrained(
|
106 |
+
pretrained_model_name_or_path=model_name,
|
107 |
+
use_safetensors=True,
|
108 |
+
torch_dtype=dtype,
|
109 |
+
subfolder="vae",
|
110 |
+
).to(self.gpu),
|
111 |
+
)
|
112 |
+
return self.pipe.vae
|
113 |
|
114 |
+
def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
model_lower = model.lower()
|
116 |
|
117 |
schedulers = {
|
|
|
163 |
if not same_scheduler or not same_karras:
|
164 |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
165 |
|
166 |
+
self._load_vae(model_lower, taesd, dtype)
|
167 |
+
self._load_deepcache(interval=deepcache_interval)
|
168 |
+
self._load_tgate()
|
|
|
|
|
|
|
|
|
169 |
return self.pipe
|
170 |
else:
|
171 |
print(f"Unloading {model_name.lower()}...")
|
|
|
182 |
|
183 |
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
184 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
185 |
+
self._load_vae(model_lower, taesd, dtype)
|
186 |
+
self._load_deepcache(interval=deepcache_interval)
|
187 |
+
self._load_tgate()
|
188 |
self.pipe.load_textual_inversion(
|
189 |
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
190 |
tokens=list(EMBEDDINGS.values()),
|
|
|
192 |
return self.pipe
|
193 |
|
194 |
|
195 |
+
# applies tome to the pipeline
|
196 |
@contextmanager
|
197 |
+
def token_merging(pipe, tome_ratio=0):
|
198 |
+
try:
|
199 |
+
if tome_ratio > 0:
|
200 |
+
tomesd.apply_patch(pipe, max_downsample=1, sx=2, sy=2, ratio=tome_ratio)
|
201 |
+
yield
|
202 |
+
finally:
|
203 |
+
tomesd.remove_patch(pipe) # idempotent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
|
206 |
# parse prompts with arrays
|
|
|
218 |
current_prompt = prompt
|
219 |
for i, token in enumerate(combo):
|
220 |
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
|
|
|
221 |
prompts.append(current_prompt)
|
222 |
return prompts
|
223 |
|
|
|
239 |
clip_skip=False,
|
240 |
truncate_prompts=False,
|
241 |
increment_seed=True,
|
242 |
+
deepcache_interval=1,
|
|
|
243 |
tgate_step=0,
|
244 |
+
tome_ratio=0,
|
245 |
Error=Exception,
|
246 |
):
|
247 |
if not torch.cuda.is_available():
|
|
|
264 |
|
265 |
with torch.inference_mode():
|
266 |
loader = Loader()
|
267 |
+
pipe = loader.load(model, scheduler, karras, taesd, deepcache_interval, TORCH_DTYPE)
|
268 |
|
269 |
# prompt embeds
|
270 |
compel = Compel(
|
|
|
294 |
[pos_embeds, neg_embeds]
|
295 |
)
|
296 |
|
297 |
+
with token_merging(pipe, tome_ratio=tome_ratio):
|
298 |
+
# cap the tgate step
|
299 |
+
gate_step = min(
|
300 |
+
tgate_step if tgate_step > 0 else inference_steps,
|
301 |
+
inference_steps,
|
302 |
+
)
|
303 |
+
result = pipe.tgate(
|
304 |
+
num_inference_steps=inference_steps,
|
305 |
+
negative_prompt_embeds=neg_embeds,
|
306 |
+
guidance_scale=guidance_scale,
|
307 |
+
prompt_embeds=pos_embeds,
|
308 |
+
gate_step=gate_step,
|
309 |
+
generator=generator,
|
310 |
+
height=height,
|
311 |
+
width=width,
|
|
|
|
|
|
|
|
|
312 |
)
|
313 |
images.append((result.images[0], str(current_seed)))
|
314 |
|
requirements.txt
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
accelerate
|
2 |
compel
|
3 |
-
deepcache
|
4 |
diffusers
|
5 |
hf-transfer
|
6 |
-
gradio
|
7 |
ruff
|
8 |
scipy # for LMS scheduler
|
9 |
spaces
|
10 |
-
tgate
|
|
|
11 |
torch
|
12 |
torchvision
|
13 |
transformers
|
|
|
1 |
accelerate
|
2 |
compel
|
3 |
+
deepcache==0.1.1
|
4 |
diffusers
|
5 |
hf-transfer
|
6 |
+
gradio==4.39.0
|
7 |
ruff
|
8 |
scipy # for LMS scheduler
|
9 |
spaces
|
10 |
+
tgate==0.1.2
|
11 |
+
tomesd==0.1.3
|
12 |
torch
|
13 |
torchvision
|
14 |
transformers
|