Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ALBERT model. """ | |
import logging | |
import math | |
import os | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from datetime import datetime | |
from transformers.models.albert.configuration_albert import AlbertConfig | |
from transformers.models.bert.modeling_bert import ACT2FN,BertEmbeddings, BertSelfAttention, prune_linear_layer | |
# from transformers.configuration_albert import AlbertConfig | |
# from transformers.modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward | |
logger = logging.getLogger(__name__) | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
"albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-pytorch_model.bin", | |
"albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-pytorch_model.bin", | |
"albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-pytorch_model.bin", | |
"albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-pytorch_model.bin", | |
"albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-pytorch_model.bin", | |
"albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-pytorch_model.bin", | |
"albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-pytorch_model.bin", | |
"albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-pytorch_model.bin", | |
} | |
# load pretrained weights from tensorflow | |
def load_tf_weights_in_albert(model, config, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF mode·l | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
print(name) | |
for name, array in zip(names, arrays): | |
original_name = name | |
# If saved from the TF HUB module | |
name = name.replace("module/", "") | |
# Renaming and simplifying | |
name = name.replace("ffn_1", "ffn") | |
name = name.replace("bert/", "albert/") | |
name = name.replace("attention_1", "attention") | |
name = name.replace("transform/", "") | |
name = name.replace("LayerNorm_1", "full_layer_layer_norm") | |
name = name.replace("LayerNorm", "attention/LayerNorm") | |
name = name.replace("transformer/", "") | |
# The feed forward layer had an 'intermediate' step which has been abstracted away | |
name = name.replace("intermediate/dense/", "") | |
name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") | |
# ALBERT attention was split between self and output which have been abstracted away | |
name = name.replace("/output/", "/") | |
name = name.replace("/self/", "/") | |
# The pooler is a linear layer | |
name = name.replace("pooler/dense", "pooler") | |
# The classifier was simplified to predictions from cls/predictions | |
name = name.replace("cls/predictions", "predictions") | |
name = name.replace("predictions/attention", "predictions") | |
# Naming was changed to be more explicit | |
name = name.replace("embeddings/attention", "embeddings") | |
name = name.replace("inner_group_", "albert_layers/") | |
name = name.replace("group_", "albert_layer_groups/") | |
# Classifier | |
if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): | |
name = "classifier/" + name | |
# No ALBERT model currently handles the next sentence prediction task | |
if "seq_relationship" in name: | |
continue | |
name = name.split("/") | |
# Ignore the gradients applied by the LAMB/ADAM optimizers. | |
if ( | |
"adam_m" in name | |
or "adam_v" in name | |
or "AdamWeightDecayOptimizer" in name | |
or "AdamWeightDecayOptimizer_1" in name | |
or "global_step" in name | |
): | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print("Initialize PyTorch weight {} from {}".format(name, original_name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
class AlbertEmbeddings(BertEmbeddings): | |
""" | |
Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) | |
self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) | |
class AlbertAttention(BertSelfAttention): | |
def __init__(self, config): | |
super().__init__(config) | |
self.output_attentions = config.output_attentions | |
self.num_attention_heads = config.num_attention_heads | |
self.hidden_size = config.hidden_size | |
self.attention_head_size = config.hidden_size // config.num_attention_heads | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.num_attention_heads, self.attention_head_size) | |
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.query = prune_linear_layer(self.query, index) | |
self.key = prune_linear_layer(self.key, index) | |
self.value = prune_linear_layer(self.value, index) | |
self.dense = prune_linear_layer(self.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.num_attention_heads = self.num_attention_heads - len(heads) | |
self.all_head_size = self.attention_head_size * self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, input_ids, attention_mask=None, head_mask=None): | |
mixed_query_layer = self.query(input_ids) | |
mixed_key_layer = self.key(input_ids) | |
mixed_value_layer = self.value(input_ids) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
# Should find a better way to do this | |
w = ( | |
self.dense.weight.t() | |
.view(self.num_attention_heads, self.attention_head_size, self.hidden_size) | |
.to(context_layer.dtype) | |
) | |
b = self.dense.bias.to(context_layer.dtype) | |
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b | |
projected_context_layer_dropout = self.dropout(projected_context_layer) | |
layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout) | |
return (layernormed_context_layer, attention_probs) if self.output_attentions else (layernormed_context_layer,) | |
class AlbertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.attention = AlbertAttention(config) | |
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.activation = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
attention_output = self.attention(hidden_states, attention_mask, head_mask) | |
ffn_output = self.ffn(attention_output[0]) | |
ffn_output = self.activation(ffn_output) | |
ffn_output = self.ffn_output(ffn_output) | |
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) | |
return (hidden_states,) + attention_output[1:] # add attentions if we output them | |
class AlbertLayerGroup(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
layer_hidden_states = () | |
layer_attentions = () | |
for layer_index, albert_layer in enumerate(self.albert_layers): | |
layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index]) | |
hidden_states = layer_output[0] | |
if self.output_attentions: | |
layer_attentions = layer_attentions + (layer_output[1],) | |
if self.output_hidden_states: | |
layer_hidden_states = layer_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if self.output_hidden_states: | |
outputs = outputs + (layer_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (layer_attentions,) | |
return outputs # last-layer hidden state, (layer hidden states), (layer attentions) | |
class AlbertTransformer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) | |
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
hidden_states = self.embedding_hidden_mapping_in(hidden_states) | |
all_attentions = () | |
if self.output_hidden_states: | |
all_hidden_states = (hidden_states,) | |
for i in range(self.config.num_hidden_layers): | |
# Number of layers in a hidden group | |
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) | |
# Index of the hidden group | |
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) | |
layer_group_output = self.albert_layer_groups[group_idx]( | |
hidden_states, | |
attention_mask, | |
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], | |
) | |
hidden_states = layer_group_output[0] | |
if self.output_attentions: | |
all_attentions = all_attentions + layer_group_output[-1] | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None): | |
if current_layer == 0: | |
hidden_states = self.embedding_hidden_mapping_in(hidden_states) | |
else: | |
hidden_states = hidden_states[0] | |
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) | |
# Index of the hidden group | |
group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups)) | |
# Index of the layer inside the group | |
layer_idx = int(current_layer - group_idx * layers_per_group) | |
layer_group_output = self.albert_layer_groups[group_idx](hidden_states, attention_mask, head_mask[group_idx * layers_per_group:(group_idx + 1) * layers_per_group]) | |
hidden_states = layer_group_output[0] | |
return (hidden_states,) | |
class AlbertPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
config_class = AlbertConfig | |
pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "albert" | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
ALBERT_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general | |
usage and behavior. | |
Args: | |
config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
ALBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`transformers.AlbertTokenizer`. | |
See :func:`transformers.PreTrainedTokenizer.encode` and | |
:func:`transformers.PreTrainedTokenizer.encode_plus` for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Segment token indices to indicate first and second portions of the inputs. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
corresponds to a `sentence B` token | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. | |
input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
""" | |
class AlbertModel(AlbertPreTrainedModel): | |
config_class = AlbertConfig | |
pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_albert | |
base_model_prefix = "albert" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = AlbertEmbeddings(config) | |
self.encoder = AlbertTransformer(config) | |
self.pooler = nn.Linear(config.hidden_size, config.hidden_size) | |
self.pooler_activation = nn.Tanh() | |
self.init_weights() | |
# hyper-param for patience-based adaptive inference | |
self.patience = 0 | |
# threshold for confidence-based adaptive inference | |
self.confidence_threshold = 0.8 | |
# mode for fast_inference [True for patience-based/ False for confidence-based/ All classifier/ Last Classifier] | |
self.mode = 'patience' # [patience/confi/all/last] | |
self.inference_instances_num = 0 | |
self.inference_layers_num = 0 | |
# exits count log | |
self.exits_count_list = [0] * self.config.num_hidden_layers | |
# exits time log | |
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)] | |
self.regression_threshold = 0 | |
def set_regression_threshold(self, threshold): | |
self.regression_threshold = threshold | |
def set_mode(self, patience='patience'): | |
self.mode = patience # mode for test-time inference | |
def set_patience(self, patience): | |
self.patience = patience | |
def set_exit_pos(self, exit_pos): | |
self.exit_pos = exit_pos | |
def set_confi_threshold(self, confidence_threshold): | |
self.confidence_threshold = confidence_threshold | |
def reset_stats(self): | |
self.inference_instances_num = 0 | |
self.inference_layers_num = 0 | |
self.exits_count_list = [0] * self.config.num_hidden_layers | |
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)] | |
def log_stats(self): | |
avg_inf_layers = self.inference_layers_num / self.inference_instances_num | |
message = f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up = {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' | |
print(message) | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. | |
If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there | |
is a total of 4 different layers. | |
These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, | |
while [2,3] correspond to the two inner groups of the second hidden layer. | |
Any layer with in index other than [0,1,2,3] will result in an error. | |
See base class PreTrainedModel for more information about head pruning | |
""" | |
for layer, heads in heads_to_prune.items(): | |
group_idx = int(layer / self.config.inner_group_num) | |
inner_group_idx = int(layer - group_idx * self.config.inner_group_num) | |
self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_dropout=None, | |
output_layers=None, | |
regression=False | |
): | |
r""" | |
Return: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): | |
Last layer hidden-state of the first token of the sequence (classification token) | |
further processed by a Linear layer and a Tanh activation function. The Linear | |
layer weights are trained from the next sentence prediction (classification) | |
objective during pre-training. | |
This output is usually *not* a good summary | |
of the semantic content of the input, you're often better with averaging or pooling | |
the sequence of hidden-states for the whole input sequence. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Example:: | |
from transformers import AlbertModel, AlbertTokenizer | |
import torch | |
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
model = AlbertModel.from_pretrained('albert-base-v2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = ( | |
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) | |
) # We can specify head_mask for each layer | |
head_mask = head_mask.to( | |
dtype=next(self.parameters()).dtype | |
) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings( | |
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
encoder_outputs = embedding_output | |
if self.training: | |
res = [] | |
for i in range(self.config.num_hidden_layers): | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
logits = output_layers[i](output_dropout(pooled_output)) | |
res.append(logits) | |
elif self.mode == 'last': # Use all layers for inference [last classifier] | |
encoder_outputs = self.encoder(encoder_outputs, | |
extended_attention_mask, | |
head_mask=head_mask) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)] | |
elif self.mode == 'exact': | |
res = [] | |
for i in range(self.exit_pos): | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
logits = output_layers[i](output_dropout(pooled_output)) | |
res.append(logits) | |
elif self.mode == 'all': | |
tic = datetime.now() | |
res = [] | |
for i in range(self.config.num_hidden_layers): | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
logits = output_layers[i](output_dropout(pooled_output)) | |
toc = datetime.now() | |
exit_time = (toc - tic).total_seconds() | |
res.append(logits) | |
self.exits_time_list[i].append(exit_time) | |
elif self.mode=='patience': # fast inference for patience-based | |
if self.patience <=0: | |
raise ValueError("Patience must be greater than 0") | |
patient_counter = 0 | |
patient_result = None | |
calculated_layer_num = 0 | |
# tic = datetime.now() | |
for i in range(self.config.num_hidden_layers): | |
calculated_layer_num += 1 | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
logits = output_layers[i](pooled_output) | |
if regression: | |
labels = logits.detach() | |
if patient_result is not None: | |
patient_labels = patient_result.detach() | |
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: | |
patient_counter += 1 | |
else: | |
patient_counter = 0 | |
else: | |
labels = logits.detach().argmax(dim=1) | |
if patient_result is not None: | |
patient_labels = patient_result.detach().argmax(dim=1) | |
if (patient_result is not None) and torch.all(labels.eq(patient_labels)): | |
patient_counter += 1 | |
else: | |
patient_counter = 0 | |
patient_result = logits | |
if patient_counter == self.patience: | |
break | |
# toc = datetime.now() | |
# self.exit_time = (toc - tic).total_seconds() | |
res = [patient_result] | |
self.inference_layers_num += calculated_layer_num | |
self.inference_instances_num += 1 | |
self.current_exit_layer = calculated_layer_num | |
# LOG EXIT POINTS COUNTS | |
self.exits_count_list[calculated_layer_num-1] += 1 | |
elif self.mode == 'confi': | |
if self.confidence_threshold<0 or self.confidence_threshold>1: | |
raise ValueError('Confidence Threshold must be set within the range 0-1') | |
calculated_layer_num = 0 | |
tic = datetime.now() | |
for i in range(self.config.num_hidden_layers): | |
calculated_layer_num += 1 | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) | |
logits = output_layers[i](pooled_output) | |
labels = logits.detach().argmax(dim=1) | |
logits_max,_ = logits.detach().softmax(dim=1).max(dim=1) | |
confi_result = logits | |
if torch.all(logits_max.gt(self.confidence_threshold)): | |
break | |
toc = datetime.now() | |
self.exit_time = (toc - tic).total_seconds() | |
res = [confi_result] | |
self.inference_layers_num += calculated_layer_num | |
self.inference_instances_num += 1 | |
self.current_exit_layer = calculated_layer_num | |
# LOG EXIT POINTS COUNTS | |
self.exits_count_list[calculated_layer_num-1] += 1 | |
return res | |
class AlbertMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.LayerNorm = nn.LayerNorm(config.embedding_size) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
self.dense = nn.Linear(config.hidden_size, config.embedding_size) | |
self.decoder = nn.Linear(config.embedding_size, config.vocab_size) | |
self.activation = ACT2FN[config.hidden_act] | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
prediction_scores = hidden_states | |
return prediction_scores | |
class AlbertForMaskedLM(AlbertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.albert = AlbertModel(config) | |
self.predictions = AlbertMLMHead(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings) | |
def get_output_embeddings(self): | |
return self.predictions.decoder | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
masked_lm_labels=None, | |
): | |
r""" | |
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with | |
labels in ``[0, ..., config.vocab_size]`` | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: | |
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Masked language modeling loss. | |
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Example:: | |
from transformers import AlbertTokenizer, AlbertForMaskedLM | |
import torch | |
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
model = AlbertForMaskedLM.from_pretrained('albert-base-v2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, masked_lm_labels=input_ids) | |
loss, prediction_scores = outputs[:2] | |
""" | |
outputs = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_outputs = outputs[0] | |
prediction_scores = self.predictions(sequence_outputs) | |
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here | |
if masked_lm_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
outputs = (masked_lm_loss,) + outputs | |
return outputs | |
class AlbertForSequenceClassification(AlbertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.albert = AlbertModel(config) | |
self.dropout = nn.Dropout(config.classifier_dropout_prob) | |
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: | |
loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import AlbertTokenizer, AlbertForSequenceClassification | |
import torch | |
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
model = AlbertForSequenceClassification.from_pretrained('albert-base-v2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
logits = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_dropout=self.dropout, | |
output_layers=self.classifiers, | |
regression=self.num_labels == 1 | |
) | |
if self.albert.mode == 'all': | |
outputs = (logits,) | |
else: | |
outputs = (logits[-1],) | |
if labels is not None: | |
total_loss = None | |
total_weights = 0 | |
for ix, logits_item in enumerate(logits): | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits_item.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) | |
if total_loss is None: | |
total_loss = loss | |
else: | |
total_loss += loss * (ix + 1) | |
total_weights += ix + 1 | |
outputs = (total_loss / total_weights,) + outputs | |
return outputs # (loss), logits, (hidden_states), (attentions) | |
class AlbertForQuestionAnswering(AlbertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.albert = AlbertModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: | |
loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-start scores (before SoftMax). | |
end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-end scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
# The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the | |
# examples/run_squad.py example to see how to fine-tune a model to a question answering task. | |
from transformers import AlbertTokenizer, AlbertForQuestionAnswering | |
import torch | |
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2') | |
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
input_dict = tokenizer.encode_plus(question, text, return_tensors='pt') | |
start_scores, end_scores = model(**input_dict) | |
""" | |
outputs = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
outputs = (start_logits, end_logits,) + outputs[2:] | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |