import torch import gradio as gr # Use a pipeline as a high-level helper from transformers import pipeline text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype = torch.bfloat16) def summary (input): output = text_summary(input) return output[0]['summary_text'] gr.close_all() # demo = gr.Interface(fn=summary, inputs="text", outputs="text") demo = gr.Interface(fn=summary, inputs=[gr.Textbox(label="Input the text to summarize")], outputs=[gr.Textbox(label="Summarized text")], title="Text summarizer", ) demo.launch()