Spaces:
Running
Running
import cv2 | |
import math | |
import numpy as np | |
import os | |
import torch | |
from torchvision.utils import make_grid | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
"""Numpy array to tensor. | |
Args: | |
imgs (list[ndarray] | ndarray): Input images. | |
bgr2rgb (bool): Whether to change bgr to rgb. | |
float32 (bool): Whether to change to float32. | |
Returns: | |
list[tensor] | tensor: Tensor images. If returned results only have | |
one element, just return tensor. | |
""" | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
else: | |
return _totensor(imgs, bgr2rgb, float32) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
if torch.is_tensor(tensor): | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1: | |
result = result[0] | |
return result | |
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)): | |
"""This implementation is slightly faster than tensor2img. | |
It now only supports torch tensor with shape (1, c, h, w). | |
Args: | |
tensor (Tensor): Now only support torch tensor with (1, c, h, w). | |
rgb2bgr (bool): Whether to change rgb to bgr. Default: True. | |
min_max (tuple[int]): min and max values for clamp. | |
""" | |
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0) | |
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255 | |
output = output.type(torch.uint8).cpu().numpy() | |
if rgb2bgr: | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |
def imfrombytes(content, flag='color', float32=False): | |
"""Read an image from bytes. | |
Args: | |
content (bytes): Image bytes got from files or other streams. | |
flag (str): Flags specifying the color type of a loaded image, | |
candidates are `color`, `grayscale` and `unchanged`. | |
float32 (bool): Whether to change to float32., If True, will also norm | |
to [0, 1]. Default: False. | |
Returns: | |
ndarray: Loaded image array. | |
""" | |
img_np = np.frombuffer(content, np.uint8) | |
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} | |
img = cv2.imdecode(img_np, imread_flags[flag]) | |
if float32: | |
img = img.astype(np.float32) / 255. | |
return img | |
def imwrite(img, file_path, params=None, auto_mkdir=True): | |
"""Write image to file. | |
Args: | |
img (ndarray): Image array to be written. | |
file_path (str): Image file path. | |
params (None or list): Same as opencv's :func:`imwrite` interface. | |
auto_mkdir (bool): If the parent folder of `file_path` does not exist, | |
whether to create it automatically. | |
Returns: | |
bool: Successful or not. | |
""" | |
if auto_mkdir: | |
dir_name = os.path.abspath(os.path.dirname(file_path)) | |
os.makedirs(dir_name, exist_ok=True) | |
ok = cv2.imwrite(file_path, img, params) | |
if not ok: | |
raise IOError('Failed in writing images.') | |
def crop_border(imgs, crop_border): | |
"""Crop borders of images. | |
Args: | |
imgs (list[ndarray] | ndarray): Images with shape (h, w, c). | |
crop_border (int): Crop border for each end of height and weight. | |
Returns: | |
list[ndarray]: Cropped images. | |
""" | |
if crop_border == 0: | |
return imgs | |
else: | |
if isinstance(imgs, list): | |
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs] | |
else: | |
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...] | |
def tensor_lab2rgb(labs, illuminant="D65", observer="2"): | |
""" | |
Args: | |
lab : (B, C, H, W) | |
Returns: | |
tuple : (C, H, W) | |
""" | |
illuminants = \ | |
{"A": {'2': (1.098466069456375, 1, 0.3558228003436005), | |
'10': (1.111420406956693, 1, 0.3519978321919493)}, | |
"D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), | |
'10': (0.9672062750333777, 1, 0.8142801513128616)}, | |
"D55": {'2': (0.956797052643698, 1, 0.9214805860173273), | |
'10': (0.9579665682254781, 1, 0.9092525159847462)}, | |
"D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` | |
'10': (0.94809667673716, 1, 1.0730513595166162)}, | |
"D75": {'2': (0.9497220898840717, 1, 1.226393520724154), | |
'10': (0.9441713925645873, 1, 1.2064272211720228)}, | |
"E": {'2': (1.0, 1.0, 1.0), | |
'10': (1.0, 1.0, 1.0)}} | |
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], | |
[0.019334, 0.119193, 0.950227]]) | |
rgb_from_xyz = np.array([[3.240481340, -0.96925495, 0.055646640], [-1.53715152, 1.875990000, -0.20404134], | |
[-0.49853633, 0.041555930, 1.057311070]]) | |
B, C, H, W = labs.shape | |
arrs = labs.permute((0, 2, 3, 1)).contiguous() # (B, 3, H, W) -> (B, H, W, 3) | |
L, a, b = arrs[:, :, :, 0:1], arrs[:, :, :, 1:2], arrs[:, :, :, 2:] | |
y = (L + 16.) / 116. | |
x = (a / 500.) + y | |
z = y - (b / 200.) | |
invalid = z.data < 0 | |
z[invalid] = 0 | |
xyz = torch.cat([x, y, z], dim=3) | |
mask = xyz.data > 0.2068966 | |
mask_xyz = xyz.clone() | |
mask_xyz[mask] = torch.pow(xyz[mask], 3.0) | |
mask_xyz[~mask] = (xyz[~mask] - 16.0 / 116.) / 7.787 | |
xyz_ref_white = illuminants[illuminant][observer] | |
for i in range(C): | |
mask_xyz[:, :, :, i] = mask_xyz[:, :, :, i] * xyz_ref_white[i] | |
rgb_trans = torch.mm(mask_xyz.view(-1, 3), torch.from_numpy(rgb_from_xyz).type_as(xyz)).view(B, H, W, C) | |
rgb = rgb_trans.permute((0, 3, 1, 2)).contiguous() | |
mask = rgb.data > 0.0031308 | |
mask_rgb = rgb.clone() | |
mask_rgb[mask] = 1.055 * torch.pow(rgb[mask], 1 / 2.4) - 0.055 | |
mask_rgb[~mask] = rgb[~mask] * 12.92 | |
neg_mask = mask_rgb.data < 0 | |
large_mask = mask_rgb.data > 1 | |
mask_rgb[neg_mask] = 0 | |
mask_rgb[large_mask] = 1 | |
return mask_rgb |