colorphoto / basicsr /utils /img_util.py
My-AI-Projects's picture
Add application file
aaa2047
import cv2
import math
import numpy as np
import os
import torch
from torchvision.utils import make_grid
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
"""This implementation is slightly faster than tensor2img.
It now only supports torch tensor with shape (1, c, h, w).
Args:
tensor (Tensor): Now only support torch tensor with (1, c, h, w).
rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
min_max (tuple[int]): min and max values for clamp.
"""
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
output = output.type(torch.uint8).cpu().numpy()
if rgb2bgr:
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
def imfrombytes(content, flag='color', float32=False):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
float32 (bool): Whether to change to float32., If True, will also norm
to [0, 1]. Default: False.
Returns:
ndarray: Loaded image array.
"""
img_np = np.frombuffer(content, np.uint8)
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
img = cv2.imdecode(img_np, imread_flags[flag])
if float32:
img = img.astype(np.float32) / 255.
return img
def imwrite(img, file_path, params=None, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
ok = cv2.imwrite(file_path, img, params)
if not ok:
raise IOError('Failed in writing images.')
def crop_border(imgs, crop_border):
"""Crop borders of images.
Args:
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
crop_border (int): Crop border for each end of height and weight.
Returns:
list[ndarray]: Cropped images.
"""
if crop_border == 0:
return imgs
else:
if isinstance(imgs, list):
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
else:
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
def tensor_lab2rgb(labs, illuminant="D65", observer="2"):
"""
Args:
lab : (B, C, H, W)
Returns:
tuple : (C, H, W)
"""
illuminants = \
{"A": {'2': (1.098466069456375, 1, 0.3558228003436005),
'10': (1.111420406956693, 1, 0.3519978321919493)},
"D50": {'2': (0.9642119944211994, 1, 0.8251882845188288),
'10': (0.9672062750333777, 1, 0.8142801513128616)},
"D55": {'2': (0.956797052643698, 1, 0.9214805860173273),
'10': (0.9579665682254781, 1, 0.9092525159847462)},
"D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white`
'10': (0.94809667673716, 1, 1.0730513595166162)},
"D75": {'2': (0.9497220898840717, 1, 1.226393520724154),
'10': (0.9441713925645873, 1, 1.2064272211720228)},
"E": {'2': (1.0, 1.0, 1.0),
'10': (1.0, 1.0, 1.0)}}
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]])
rgb_from_xyz = np.array([[3.240481340, -0.96925495, 0.055646640], [-1.53715152, 1.875990000, -0.20404134],
[-0.49853633, 0.041555930, 1.057311070]])
B, C, H, W = labs.shape
arrs = labs.permute((0, 2, 3, 1)).contiguous() # (B, 3, H, W) -> (B, H, W, 3)
L, a, b = arrs[:, :, :, 0:1], arrs[:, :, :, 1:2], arrs[:, :, :, 2:]
y = (L + 16.) / 116.
x = (a / 500.) + y
z = y - (b / 200.)
invalid = z.data < 0
z[invalid] = 0
xyz = torch.cat([x, y, z], dim=3)
mask = xyz.data > 0.2068966
mask_xyz = xyz.clone()
mask_xyz[mask] = torch.pow(xyz[mask], 3.0)
mask_xyz[~mask] = (xyz[~mask] - 16.0 / 116.) / 7.787
xyz_ref_white = illuminants[illuminant][observer]
for i in range(C):
mask_xyz[:, :, :, i] = mask_xyz[:, :, :, i] * xyz_ref_white[i]
rgb_trans = torch.mm(mask_xyz.view(-1, 3), torch.from_numpy(rgb_from_xyz).type_as(xyz)).view(B, H, W, C)
rgb = rgb_trans.permute((0, 3, 1, 2)).contiguous()
mask = rgb.data > 0.0031308
mask_rgb = rgb.clone()
mask_rgb[mask] = 1.055 * torch.pow(rgb[mask], 1 / 2.4) - 0.055
mask_rgb[~mask] = rgb[~mask] * 12.92
neg_mask = mask_rgb.data < 0
large_mask = mask_rgb.data > 1
mask_rgb[neg_mask] = 0
mask_rgb[large_mask] = 1
return mask_rgb