File size: 6,745 Bytes
932ae62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""

    This file is part of ComfyUI.

    Copyright (C) 2024 Stability AI



    This program is free software: you can redistribute it and/or modify

    it under the terms of the GNU General Public License as published by

    the Free Software Foundation, either version 3 of the License, or

    (at your option) any later version.



    This program is distributed in the hope that it will be useful,

    but WITHOUT ANY WARRANTY; without even the implied warranty of

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

    GNU General Public License for more details.



    You should have received a copy of the GNU General Public License

    along with this program.  If not, see <https://www.gnu.org/licenses/>.

"""

import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops

class OptimizedAttention(nn.Module):
    def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
        super().__init__()
        self.heads = nhead

        self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
        self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
        self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)

        self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)

    def forward(self, q, k, v):
        q = self.to_q(q)
        k = self.to_k(k)
        v = self.to_v(v)

        out = optimized_attention(q, k, v, self.heads)

        return self.out_proj(out)

class Attention2D(nn.Module):
    def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
        super().__init__()
        self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
        # self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)

    def forward(self, x, kv, self_attn=False):
        orig_shape = x.shape
        x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1)  # Bx4xHxW -> Bx(HxW)x4
        if self_attn:
            kv = torch.cat([x, kv], dim=1)
        # x = self.attn(x, kv, kv, need_weights=False)[0]
        x = self.attn(x, kv, kv)
        x = x.permute(0, 2, 1).view(*orig_shape)
        return x


def LayerNorm2d_op(operations):
    class LayerNorm2d(operations.LayerNorm):
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)

        def forward(self, x):
            return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
    return LayerNorm2d

class GlobalResponseNorm(nn.Module):
    "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
    def __init__(self, dim, dtype=None, device=None):
        super().__init__()
        self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
        self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x


class ResBlock(nn.Module):
    def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None):  # , num_heads=4, expansion=2):
        super().__init__()
        self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
        #         self.depthwise = SAMBlock(c, num_heads, expansion)
        self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.channelwise = nn.Sequential(
            operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
            nn.GELU(),
            GlobalResponseNorm(c * 4, dtype=dtype, device=device),
            nn.Dropout(dropout),
            operations.Linear(c * 4, c, dtype=dtype, device=device)
        )

    def forward(self, x, x_skip=None):
        x_res = x
        x = self.norm(self.depthwise(x))
        if x_skip is not None:
            x = torch.cat([x, x_skip], dim=1)
        x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x + x_res


class AttnBlock(nn.Module):
    def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
        super().__init__()
        self.self_attn = self_attn
        self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
        self.kv_mapper = nn.Sequential(
            nn.SiLU(),
            operations.Linear(c_cond, c, dtype=dtype, device=device)
        )

    def forward(self, x, kv):
        kv = self.kv_mapper(kv)
        x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
        return x


class FeedForwardBlock(nn.Module):
    def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
        super().__init__()
        self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.channelwise = nn.Sequential(
            operations.Linear(c, c * 4, dtype=dtype, device=device),
            nn.GELU(),
            GlobalResponseNorm(c * 4, dtype=dtype, device=device),
            nn.Dropout(dropout),
            operations.Linear(c * 4, c, dtype=dtype, device=device)
        )

    def forward(self, x):
        x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x


class TimestepBlock(nn.Module):
    def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
        super().__init__()
        self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
        self.conds = conds
        for cname in conds:
            setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))

    def forward(self, x, t):
        t = t.chunk(len(self.conds) + 1, dim=1)
        a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
        for i, c in enumerate(self.conds):
            ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
            a, b = a + ac, b + bc
        return x * (1 + a) + b