Spaces:
Running
on
Zero
Running
on
Zero
File size: 74,335 Bytes
3d5837a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
import math
from copy import deepcopy
from torch.nn import Upsample
import comfy.model_management as model_management
from comfy.model_patcher import set_model_options_patch_replace
from comfy.ldm.modules.attention import attention_basic, attention_xformers, attention_pytorch, attention_split, attention_sub_quad, optimized_attention_for_device
from .experimental_temperature import temperature_patcher
import comfy.samplers
import comfy.utils
import numpy as np
import torch
import torch.nn.functional as F
from colorama import Fore, Style
import json
import os
import random
import base64
original_sampling_function = None
current_dir = os.path.dirname(os.path.realpath(__file__))
json_preset_path = os.path.join(current_dir, 'presets')
attnfunc = optimized_attention_for_device(model_management.get_torch_device())
check_string = "UEFUUkVPTi50eHQ="
support_string = b'CgoKClRoYW5rIHlvdSBmb3IgdXNpbmcgbXkgbm9kZXMhCgpJZiB5b3UgZW5qb3kgaXQsIHBsZWFzZSBjb25zaWRlciBzdXBwb3J0aW5nIG1lIG9uIFBhdHJlb24gdG8ga2VlcCB0aGUgbWFnaWMgZ29pbmchCgpWaXNpdDoKCmh0dHBzOi8vd3d3LnBhdHJlb24uY29tL2V4dHJhbHRvZGV1cwoKCgo='
def support_function():
if base64.b64decode(check_string).decode('utf8') not in os.listdir(current_dir):
print(base64.b64decode(check_string).decode('utf8'))
print(base64.b64decode(support_string).decode('utf8'))
def sampling_function_patched(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, **kwargs):
cond_copy = cond
uncond_copy = uncond
for fn in model_options.get("sampler_patch_model_pre_cfg_function", []):
args = {"model": model, "sigma": timestep, "model_options": model_options}
model, model_options = fn(args)
if "sampler_pre_cfg_automatic_cfg_function" in model_options:
uncond, cond, cond_scale = model_options["sampler_pre_cfg_automatic_cfg_function"](
sigma=timestep, uncond=uncond, cond=cond, cond_scale=cond_scale
)
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
conds = [cond, uncond_]
out = comfy.samplers.calc_cond_batch(model, conds, x, timestep, model_options)
for fn in model_options.get("sampler_pre_cfg_function", []):
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = fn(args)
cond_pred = out[0]
uncond_pred = out[1]
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options, "cond_pos": cond_copy, "cond_neg": uncond_copy}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
for fn in model_options.get("sampler_post_cfg_function", []):
args = {"denoised": cfg_result, "cond": cond_copy, "uncond": uncond_copy, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
"sigma": timestep, "model_options": model_options, "input": x}
cfg_result = fn(args)
return cfg_result
def monkey_patching_comfy_sampling_function():
global original_sampling_function
if original_sampling_function is None:
original_sampling_function = comfy.samplers.sampling_function
# Make sure to only patch once
if hasattr(comfy.samplers.sampling_function, '_automatic_cfg_decorated'):
return
comfy.samplers.sampling_function = sampling_function_patched
comfy.samplers.sampling_function._automatic_cfg_decorated = True # flag to check monkey patch
def make_sampler_pre_cfg_automatic_cfg_function(minimum_sigma_to_disable_uncond=0, maximum_sigma_to_enable_uncond=1000000, disabled_cond_start=10000,disabled_cond_end=10000):
def sampler_pre_cfg_automatic_cfg_function(sigma, uncond, cond, cond_scale, **kwargs):
if sigma[0] < minimum_sigma_to_disable_uncond or sigma[0] > maximum_sigma_to_enable_uncond:
uncond = None
if sigma[0] <= disabled_cond_start and sigma[0] > disabled_cond_end:
cond = None
return uncond, cond, cond_scale
return sampler_pre_cfg_automatic_cfg_function
def get_entropy(tensor):
hist = np.histogram(tensor.cpu(), bins=100)[0]
hist = hist / hist.sum()
hist = hist[hist > 0]
return -np.sum(hist * np.log2(hist))
def map_sigma(sigma, sigmax, sigmin):
return 1 + ((sigma - sigmax) * (0 - 1)) / (sigmin - sigmax)
def center_latent_mean_values(latent, per_channel, mult):
for b in range(len(latent)):
if per_channel:
for c in range(len(latent[b])):
latent[b][c] -= latent[b][c].mean() * mult
else:
latent[b] -= latent[b].mean() * mult
return latent
def get_denoised_ranges(latent, measure="hard", top_k=0.25):
chans = []
for x in range(len(latent)):
max_values = torch.topk(latent[x] - latent[x].mean() if measure == "range" else latent[x], k=int(len(latent[x])*top_k), largest=True).values
min_values = torch.topk(latent[x] - latent[x].mean() if measure == "range" else latent[x], k=int(len(latent[x])*top_k), largest=False).values
max_val = torch.mean(max_values).item()
min_val = abs(torch.mean(min_values).item()) if measure == "soft" else torch.mean(torch.abs(min_values)).item()
denoised_range = (max_val + min_val) / 2
chans.append(denoised_range**2 if measure == "hard_squared" else denoised_range)
return chans
def get_sigmin_sigmax(model):
model_sampling = model.model.model_sampling
sigmin = model_sampling.sigma(model_sampling.timestep(model_sampling.sigma_min))
sigmax = model_sampling.sigma(model_sampling.timestep(model_sampling.sigma_max))
return sigmin, sigmax
def gaussian_similarity(x, y, sigma=1.0):
diff = (x - y) ** 2
return torch.exp(-diff / (2 * sigma ** 2))
def check_skip(sigma, high_sigma_threshold, low_sigma_threshold):
return sigma > high_sigma_threshold or sigma < low_sigma_threshold
def max_abs(tensors):
shape = tensors.shape
tensors = tensors.reshape(shape[0], -1)
tensors_abs = torch.abs(tensors)
max_abs_idx = torch.argmax(tensors_abs, dim=0)
result = tensors[max_abs_idx, torch.arange(tensors.shape[1])]
return result.reshape(shape[1:])
def gaussian_kernel(size: int, sigma: float):
x = torch.arange(size) - size // 2
gauss = torch.exp(-x**2 / (2 * sigma**2))
kernel = gauss / gauss.sum()
return kernel.view(1, size) * kernel.view(size, 1)
def blur_tensor(tensor, kernel_size = 9, sigma = 2.0):
tensor = tensor.unsqueeze(0)
C = tensor.size(1)
kernel = gaussian_kernel(kernel_size, sigma)
kernel = kernel.expand(C, 1, kernel_size, kernel_size).to(tensor.device).to(dtype=tensor.dtype, device=tensor.device)
padding = kernel_size // 2
tensor = F.pad(tensor, (padding, padding, padding, padding), mode='reflect')
blurred_tensor = F.conv2d(tensor, kernel, groups=C)
return blurred_tensor.squeeze(0)
def smallest_distances(tensors):
if all(torch.equal(tensors[0], tensor) for tensor in tensors[1:]):
return tensors[0]
set_device = tensors.device
min_val = torch.full(tensors[0].shape, float("inf")).to(set_device)
result = torch.zeros_like(tensors[0])
for idx1, t1 in enumerate(tensors):
temp_diffs = torch.zeros_like(tensors[0])
for idx2, t2 in enumerate(tensors):
if idx1 != idx2:
temp_diffs += torch.abs(torch.sub(t1, t2))
min_val = torch.minimum(min_val, temp_diffs)
mask = torch.eq(min_val,temp_diffs)
result[mask] = t1[mask]
return result
def rescale(tensor, multiplier=2):
batch, seq_length, features = tensor.shape
H = W = int(seq_length**0.5)
tensor_reshaped = tensor.view(batch, features, H, W)
new_H = new_W = int(H * multiplier)
resized_tensor = F.interpolate(tensor_reshaped, size=(new_H, new_W), mode='bilinear', align_corners=False)
return resized_tensor.view(batch, new_H * new_W, features)
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475
def slerp(high, low, val):
dims = low.shape
#flatten to batches
low = low.reshape(dims[0], -1)
high = high.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
# in case we divide by zero
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
normalize_tensor = lambda x: x / x.norm()
def random_swap(tensors, proportion=1):
num_tensors = tensors.shape[0]
if num_tensors < 2: return tensors[0],0
tensor_size = tensors[0].numel()
if tensor_size < 100: return tensors[0],0
true_count = int(tensor_size * proportion)
mask = torch.cat((torch.ones(true_count, dtype=torch.bool, device=tensors[0].device),
torch.zeros(tensor_size - true_count, dtype=torch.bool, device=tensors[0].device)))
mask = mask[torch.randperm(tensor_size)].reshape(tensors[0].shape)
if num_tensors == 2 and proportion < 1:
index_tensor = torch.ones_like(tensors[0], dtype=torch.int64, device=tensors[0].device)
else:
index_tensor = torch.randint(1 if proportion < 1 else 0, num_tensors, tensors[0].shape, device=tensors[0].device)
for i, t in enumerate(tensors):
if i == 0: continue
merge_mask = index_tensor == i & mask
tensors[0][merge_mask] = t[merge_mask]
return tensors[0]
def multi_tensor_check_mix(tensors):
if tensors[0].numel() < 2 or len(tensors) < 2:
return tensors[0]
ref_tensor_shape = tensors[0].shape
sequence_tensor = torch.arange(tensors[0].numel(), device=tensors[0].device) % len(tensors)
reshaped_sequence = sequence_tensor.view(ref_tensor_shape)
for i in range(len(tensors)):
if i == 0: continue
mask = reshaped_sequence == i
tensors[0][mask] = tensors[i][mask]
return tensors[0]
def sspow(input_tensor, p=2):
return input_tensor.abs().pow(p) * input_tensor.sign()
def sspown(input_tensor, p=2):
abs_t = input_tensor.abs()
abs_t = (abs_t - abs_t.min()) / (abs_t.max() - abs_t.min())
return abs_t.pow(p) * input_tensor.sign()
def gradient_merge(tensor1, tensor2, start_value=0, dim=0):
if torch.numel(tensor1) <= 1: return tensor1
if dim >= tensor1.dim(): dim = 0
size = tensor1.size(dim)
alpha = torch.linspace(start_value, 1-start_value, steps=size, device=tensor1.device).view([-1 if i == dim else 1 for i in range(tensor1.dim())])
return tensor1 * alpha + tensor2 * (1 - alpha)
def save_tensor(input_tensor,name):
if "rndnum" in name:
rndnum = str(random.randint(100000,999999))
name = name.replace("rndnum", rndnum)
output_directory = os.path.join(current_dir, 'saved_tensors')
os.makedirs(output_directory, exist_ok=True)
output_file_path = os.path.join(output_directory, f"{name}.pt")
torch.save(input_tensor, output_file_path)
return input_tensor
def print_and_return(input_tensor, *args):
for what_to_print in args:
print(" ",what_to_print)
return input_tensor
# Experimental testings
def normal_attention(q, k, v, mask=None):
attention_scores = torch.matmul(q, k.transpose(-2, -1))
d_k = k.size(-1)
attention_scores = attention_scores / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
if mask is not None:
attention_scores = attention_scores.masked_fill(mask == 0, float('-inf'))
attention_weights = F.softmax(attention_scores, dim=-1)
output = torch.matmul(attention_weights, v)
return output
def split_heads(x, n_heads):
batch_size, seq_length, hidden_dim = x.size()
head_dim = hidden_dim // n_heads
x = x.view(batch_size, seq_length, n_heads, head_dim)
return x.permute(0, 2, 1, 3)
def combine_heads(x, n_heads):
batch_size, n_heads, seq_length, head_dim = x.size()
hidden_dim = n_heads * head_dim
x = x.permute(0, 2, 1, 3).contiguous()
return x.view(batch_size, seq_length, hidden_dim)
def sparsemax(logits):
logits_sorted, _ = torch.sort(logits, descending=True, dim=-1)
cumulative_sum = torch.cumsum(logits_sorted, dim=-1) - 1
rho = (logits_sorted > cumulative_sum / (torch.arange(logits.size(-1)) + 1).to(logits.device)).float()
tau = (cumulative_sum / rho.sum(dim=-1, keepdim=True)).gather(dim=-1, index=rho.sum(dim=-1, keepdim=True).long() - 1)
return torch.max(torch.zeros_like(logits), logits - tau)
def attnfunc_custom(q, k, v, n_heads, eval_string = ""):
q = split_heads(q, n_heads)
k = split_heads(k, n_heads)
v = split_heads(v, n_heads)
d_k = q.size(-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if eval_string == "":
attn_weights = F.softmax(scores, dim=-1)
else:
attn_weights = eval(eval_string)
output = torch.matmul(attn_weights, v)
output = combine_heads(output, n_heads)
return output
def min_max_norm(t):
return (t - t.min()) / (t.max() - t.min())
class attention_modifier():
def __init__(self, self_attn_mod_eval, conds = None):
self.self_attn_mod_eval = self_attn_mod_eval
self.conds = conds
def modified_attention(self, q, k, v, extra_options, mask=None):
"""extra_options contains: {'cond_or_uncond': [1, 0], 'sigmas': tensor([14.6146], device='cuda:0'),
'original_shape': [2, 4, 128, 128], 'transformer_index': 4, 'block': ('middle', 0),
'block_index': 3, 'n_heads': 20, 'dim_head': 64, 'attn_precision': None}"""
if "attnbc" in self.self_attn_mod_eval:
attnbc = attention_basic(q, k, v, extra_options['n_heads'], mask)
if "normattn" in self.self_attn_mod_eval:
normattn = normal_attention(q, k, v, mask)
if "attnxf" in self.self_attn_mod_eval:
attnxf = attention_xformers(q, k, v, extra_options['n_heads'], mask)
if "attnpy" in self.self_attn_mod_eval:
attnpy = attention_pytorch(q, k, v, extra_options['n_heads'], mask)
if "attnsp" in self.self_attn_mod_eval:
attnsp = attention_split(q, k, v, extra_options['n_heads'], mask)
if "attnsq" in self.self_attn_mod_eval:
attnsq = attention_sub_quad(q, k, v, extra_options['n_heads'], mask)
if "attnopt" in self.self_attn_mod_eval:
attnopt = attnfunc(q, k, v, extra_options['n_heads'], mask)
n_heads = extra_options['n_heads']
if self.conds is not None:
cond_pos_l = self.conds[0][..., :768].cuda()
cond_neg_l = self.conds[1][..., :768].cuda()
if self.conds[0].shape[-1] > 768:
cond_pos_g = self.conds[0][..., 768:2048].cuda()
cond_neg_g = self.conds[1][..., 768:2048].cuda()
return eval(self.self_attn_mod_eval)
def experimental_functions(cond_input, method, exp_value, exp_normalize, pcp, psi, sigma, sigmax, attention_modifiers_input, args, model_options_copy, eval_string = ""):
"""
There may or may not be an actual reasoning behind each of these methods.
Some like the sine value have interesting properties. Enabled for both cond and uncond preds it somehow make them stronger.
Note that there is a "normalize" toggle and it may change greatly the end result since some operation will totaly butcher the values.
"theDaRkNeSs" for example without normalizing seems to darken if used for cond/uncond (not with the cond as the uncond or something).
Maybe just with the positive. I don't remember. I leave it for now if you want to play around.
The eval_string can be used to create the uncond replacement.
I made it so it's split by semicolons and only the last split is the value in used.
What is before is added in an array named "v".
pcp is previous cond_pred
psi is previous sigma
args is the CFG function input arguments with the added cond/unconds (like the actual activation conditionings) named respectively "cond_pos" and "cond_neg"
So if you write:
pcp if sigma < 7 else -pcp;
print("it works too just don't use the output I guess");
v[0] if sigma < 14 else torch.zeros_like(cond);
v[-1]*2
Well the first line becomes v[0], second v[1] etc.
The last one becomes the result.
Note that it's just an example, I don't see much interest in that one.
Using comfy.samplers.calc_cond_batch(args["model"], [args["cond_pos"], None], args["input"], args["timestep"], args["model_options"])[0]
can work too.
This whole mess has for initial goal to attempt to find the best way (or have some bruteforcing fun) to replace the uncond pred for as much as possible.
Or simply to try things around :)
"""
if method == "cond_pred":
return cond_input
default_device = cond_input.device
# print()
# print(get_entropy(cond))
cond = cond_input.clone()
cond_norm = cond.norm()
if method == "amplify":
mask = torch.abs(cond) >= 1
cond_copy = cond.clone()
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
cond[mask] = torch.pow(torch.abs(cond_copy[mask]), exp_value) * cond[mask].sign()
elif method == "root":
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
elif method == "power":
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign()
elif method == "erf":
cond = torch.erf(cond)
elif method == "exp_erf":
cond = torch.pow(torch.erf(cond), exp_value)
elif method == "root_erf":
cond = torch.erf(cond)
cond = torch.pow(torch.abs(cond), 1 / exp_value ) * cond.sign()
elif method == "erf_amplify":
cond = torch.erf(cond)
mask = torch.abs(cond) >= 1
cond_copy = cond.clone()
cond = torch.pow(torch.abs(cond), 1 / exp_value ) * cond.sign()
cond[mask] = torch.pow(torch.abs(cond_copy[mask]), exp_value) * cond[mask].sign()
elif method == "sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
elif method == "sine_exp":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign()
elif method == "sine_exp_diff":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond_input), exp_value) * cond.sign() - cond
elif method == "sine_exp_diff_to_sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign() - cond
elif method == "sine_root":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
elif method == "sine_root_diff":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond_input), 1 / exp_value) * cond.sign() - cond
elif method == "sine_root_diff_to_sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), 1 / exp_value) * cond.sign() - cond
elif method == "theDaRkNeSs":
cond = torch.sin(cond)
cond = torch.pow(torch.abs(cond), 1 / exp_value) * cond.sign() - cond
elif method == "cosine":
cond = torch.cos(torch.abs(cond)) * cond.sign()
elif method == "sign":
cond = cond.sign()
elif method == "zero":
cond = torch.zeros_like(cond)
elif method in ["attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond","subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"]:
cond_to_use = args["cond_pos"] if method in ["attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_cond"] else args["cond_neg"]
tmp_model_options = deepcopy(model_options_copy)
for atm in attention_modifiers_input:
if sigma <= atm['sigma_start'] and sigma > atm['sigma_end']:
block_layers = {"input": atm['unet_block_id_input'], "middle": atm['unet_block_id_middle'], "output": atm['unet_block_id_output']}
for unet_block in block_layers:
for unet_block_id in block_layers[unet_block].split(","):
if unet_block_id != "":
unet_block_id = int(unet_block_id)
tmp_model_options = set_model_options_patch_replace(tmp_model_options, attention_modifier(atm['self_attn_mod_eval'], [args["cond_pos"][0]["cross_attn"], args["cond_neg"][0]["cross_attn"]]if "cond" in atm['self_attn_mod_eval'] else None).modified_attention, atm['unet_attn'], unet_block, unet_block_id)
cond = comfy.samplers.calc_cond_batch(args["model"], [cond_to_use], args["input"], args["timestep"], tmp_model_options)[0]
if method in ["subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"]:
cond = cond_input + (cond_input - cond) * exp_value
elif method == "previous_average":
if sigma > (sigmax - 1):
cond = torch.zeros_like(cond)
else:
cond = (pcp / psi * sigma + cond) / 2
elif method == "eval":
if "condmix" in eval_string:
def condmix(args, mult=2):
cond_pos_tmp = deepcopy(args["cond_pos"])
cond_pos_tmp[0]["cross_attn"] += (args["cond_pos"][0]["cross_attn"] - args["cond_neg"][0]["cross_attn"]*-1) * mult
return cond_pos_tmp
v = []
evals_strings = eval_string.split(";")
if len(evals_strings) > 1:
for i in range(len(evals_strings[:-1])):
v.append(eval(evals_strings[i]))
cond = eval(evals_strings[-1])
if exp_normalize and torch.all(cond != 0):
cond = cond * cond_norm / cond.norm()
# print(get_entropy(cond))
return cond.to(device=default_device)
class advancedDynamicCFG:
def __init__(self):
self.last_cfg_ht_one = 8
self.previous_cond_pred = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"automatic_cfg" : (["None", "soft", "hard", "hard_squared", "range"], {"default": "hard"},),
"skip_uncond" : ("BOOLEAN", {"default": True}),
"fake_uncond_start" : ("BOOLEAN", {"default": False}),
"uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"lerp_uncond" : ("BOOLEAN", {"default": False}),
"lerp_uncond_strength": ("FLOAT", {"default": 2, "min": 0.0, "max": 10.0, "step": 0.1, "round": 0.1}),
"lerp_uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"lerp_uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"subtract_latent_mean" : ("BOOLEAN", {"default": False}),
"subtract_latent_mean_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"subtract_latent_mean_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"latent_intensity_rescale" : ("BOOLEAN", {"default": False}),
"latent_intensity_rescale_method" : (["soft","hard","range"], {"default": "hard"},),
"latent_intensity_rescale_cfg": ("FLOAT", {"default": 8, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"latent_intensity_rescale_sigma_end": ("FLOAT", {"default": 3, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp": ("BOOLEAN", {"default": False}),
"cond_exp_normalize": ("BOOLEAN", {"default": False}),
"cond_exp_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp_method": (["amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff", "sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "previous_average", "eval",
"attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"],),
"cond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 100, "step": 0.1, "round": 0.01}),
"uncond_exp": ("BOOLEAN", {"default": False}),
"uncond_exp_normalize": ("BOOLEAN", {"default": False}),
"uncond_exp_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_exp_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_exp_method": (["amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff", "sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "previous_average", "eval",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"],),
"uncond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 100, "step": 0.1, "round": 0.01}),
"fake_uncond_exp": ("BOOLEAN", {"default": False}),
"fake_uncond_exp_normalize": ("BOOLEAN", {"default": False}),
"fake_uncond_exp_method" : (["cond_pred", "previous_average",
"amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff",
"sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "eval",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond",
"attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond"],),
"fake_uncond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 1000, "step": 0.1, "round": 0.01}),
"fake_uncond_multiplier": ("INT", {"default": 1, "min": -1, "max": 1, "step": 1}),
"fake_uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"fake_uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"auto_cfg_topk": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 0.5, "step": 0.05, "round": 0.01}),
"auto_cfg_ref": ("FLOAT", {"default": 8, "min": 0.0, "max": 100, "step": 0.5, "round": 0.01}),
"attention_modifiers_global_enabled": ("BOOLEAN", {"default": False}),
"disable_cond": ("BOOLEAN", {"default": False}),
"disable_cond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"disable_cond_sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"save_as_preset": ("BOOLEAN", {"default": False}),
"preset_name": ("STRING", {"multiline": False}),
},
"optional":{
"eval_string_cond": ("STRING", {"multiline": True}),
"eval_string_uncond": ("STRING", {"multiline": True}),
"eval_string_fake": ("STRING", {"multiline": True}),
"args_filter": ("STRING", {"multiline": True, "forceInput": True}),
"attention_modifiers_positive": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_negative": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_fake_negative": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_global": ("ATTNMOD", {"forceInput": True}),
}
}
RETURN_TYPES = ("MODEL","STRING",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, automatic_cfg = "None",
skip_uncond = False, fake_uncond_start = False, uncond_sigma_start = 1000, uncond_sigma_end = 0,
lerp_uncond = False, lerp_uncond_strength = 1, lerp_uncond_sigma_start = 1000, lerp_uncond_sigma_end = 1,
subtract_latent_mean = False, subtract_latent_mean_sigma_start = 1000, subtract_latent_mean_sigma_end = 1,
latent_intensity_rescale = False, latent_intensity_rescale_sigma_start = 1000, latent_intensity_rescale_sigma_end = 1,
cond_exp = False, cond_exp_sigma_start = 1000, cond_exp_sigma_end = 1000, cond_exp_method = "amplify", cond_exp_value = 2, cond_exp_normalize = False,
uncond_exp = False, uncond_exp_sigma_start = 1000, uncond_exp_sigma_end = 1000, uncond_exp_method = "amplify", uncond_exp_value = 2, uncond_exp_normalize = False,
fake_uncond_exp = False, fake_uncond_exp_method = "amplify", fake_uncond_exp_value = 2, fake_uncond_exp_normalize = False, fake_uncond_multiplier = 1, fake_uncond_sigma_start = 1000, fake_uncond_sigma_end = 1,
latent_intensity_rescale_cfg = 8, latent_intensity_rescale_method = "hard",
ignore_pre_cfg_func = False, args_filter = "", auto_cfg_topk = 0.25, auto_cfg_ref = 8,
eval_string_cond = "", eval_string_uncond = "", eval_string_fake = "",
attention_modifiers_global_enabled = False,
attention_modifiers_positive = [], attention_modifiers_negative = [], attention_modifiers_fake_negative = [], attention_modifiers_global = [],
disable_cond=False, disable_cond_sigma_start=1000,disable_cond_sigma_end=1000, save_as_preset = False, preset_name = "", **kwargs
):
# support_function()
model_options_copy = deepcopy(model.model_options)
monkey_patching_comfy_sampling_function()
if args_filter != "":
args_filter = args_filter.split(",")
else:
args_filter = [k for k, v in locals().items()]
not_in_filter = ['self','model','args','args_filter','save_as_preset','preset_name','model_options_copy']
if fake_uncond_exp_method != "eval":
not_in_filter.append("eval_string")
if save_as_preset and preset_name != "":
preset_parameters = {key: value for key, value in locals().items() if key not in not_in_filter}
with open(os.path.join(json_preset_path, preset_name+".json"), 'w', encoding='utf-8') as f:
json.dump(preset_parameters, f)
print(f"Preset saved with the name: {Fore.GREEN}{preset_name}{Fore.RESET}")
print(f"{Fore.RED}Don't forget to turn the save toggle OFF to not overwrite!{Fore.RESET}")
args_str = '\n'.join(f'{k}: {v}' for k, v in locals().items() if k not in not_in_filter and k in args_filter)
sigmin, sigmax = get_sigmin_sigmax(model)
lerp_start, lerp_end = lerp_uncond_sigma_start, lerp_uncond_sigma_end
subtract_start, subtract_end = subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end
rescale_start, rescale_end = latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end
print(f"Model maximum sigma: {sigmax} / Model minimum sigma: {sigmin}")
m = model.clone()
if skip_uncond or disable_cond:
# set model_options sampler_pre_cfg_automatic_cfg_function
m.model_options["sampler_pre_cfg_automatic_cfg_function"] = make_sampler_pre_cfg_automatic_cfg_function(uncond_sigma_end if skip_uncond else 0, uncond_sigma_start if skip_uncond else 100000,\
disable_cond_sigma_start if disable_cond else 100000, disable_cond_sigma_end if disable_cond else 100000)
print(f"Sampling function patched. Uncond enabled from {round(uncond_sigma_start,2)} to {round(uncond_sigma_end,2)}")
elif not ignore_pre_cfg_func:
m.model_options.pop("sampler_pre_cfg_automatic_cfg_function", None)
uncond_sigma_start, uncond_sigma_end = 1000000, 0
top_k = auto_cfg_topk
previous_cond_pred = None
previous_sigma = None
def automatic_cfg_function(args):
nonlocal previous_sigma
cond_scale = args["cond_scale"]
input_x = args["input"]
cond_pred = args["cond_denoised"]
uncond_pred = args["uncond_denoised"]
sigma = args["sigma"][0]
model_options = args["model_options"]
if self.previous_cond_pred is None:
self.previous_cond_pred = cond_pred.clone().detach().to(device=cond_pred.device)
if previous_sigma is None:
previous_sigma = sigma.item()
reference_cfg = auto_cfg_ref if auto_cfg_ref > 0 else cond_scale
def fake_uncond_step():
return fake_uncond_start and skip_uncond and (sigma > uncond_sigma_start or sigma < uncond_sigma_end) and sigma <= fake_uncond_sigma_start and sigma >= fake_uncond_sigma_end
if fake_uncond_step():
uncond_pred = cond_pred.clone().detach().to(device=cond_pred.device) * fake_uncond_multiplier
if cond_exp and sigma <= cond_exp_sigma_start and sigma >= cond_exp_sigma_end:
cond_pred = experimental_functions(cond_pred, cond_exp_method, cond_exp_value, cond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_positive, args, model_options_copy, eval_string_cond)
if uncond_exp and sigma <= uncond_exp_sigma_start and sigma >= uncond_exp_sigma_end and not fake_uncond_step():
uncond_pred = experimental_functions(uncond_pred, uncond_exp_method, uncond_exp_value, uncond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_negative, args, model_options_copy, eval_string_uncond)
if fake_uncond_step() and fake_uncond_exp:
uncond_pred = experimental_functions(uncond_pred, fake_uncond_exp_method, fake_uncond_exp_value, fake_uncond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_fake_negative, args, model_options_copy, eval_string_fake)
self.previous_cond_pred = cond_pred.clone().detach().to(device=cond_pred.device)
if sigma >= sigmax or cond_scale > 1:
self.last_cfg_ht_one = cond_scale
target_intensity = self.last_cfg_ht_one / 10
if ((check_skip(sigma, uncond_sigma_start, uncond_sigma_end) and skip_uncond) and not fake_uncond_step()) or cond_scale == 1:
return input_x - cond_pred
if lerp_uncond and not check_skip(sigma, lerp_start, lerp_end) and lerp_uncond_strength != 1:
uncond_pred_norm = uncond_pred.norm()
uncond_pred = torch.lerp(cond_pred, uncond_pred, lerp_uncond_strength)
uncond_pred = uncond_pred * uncond_pred_norm / uncond_pred.norm()
cond = input_x - cond_pred
uncond = input_x - uncond_pred
if automatic_cfg == "None":
return uncond + cond_scale * (cond - uncond)
denoised_tmp = input_x - (uncond + reference_cfg * (cond - uncond))
for b in range(len(denoised_tmp)):
denoised_ranges = get_denoised_ranges(denoised_tmp[b], automatic_cfg, top_k)
for c in range(len(denoised_tmp[b])):
fixeds_scale = reference_cfg * target_intensity / denoised_ranges[c]
denoised_tmp[b][c] = uncond[b][c] + fixeds_scale * (cond[b][c] - uncond[b][c])
return denoised_tmp
def center_mean_latent_post_cfg(args):
denoised = args["denoised"]
sigma = args["sigma"][0]
if check_skip(sigma, subtract_start, subtract_end):
return denoised
denoised = center_latent_mean_values(denoised, False, 1)
return denoised
def rescale_post_cfg(args):
denoised = args["denoised"]
sigma = args["sigma"][0]
if check_skip(sigma, rescale_start, rescale_end):
return denoised
target_intensity = latent_intensity_rescale_cfg / 10
for b in range(len(denoised)):
denoised_ranges = get_denoised_ranges(denoised[b], latent_intensity_rescale_method)
for c in range(len(denoised[b])):
scale_correction = target_intensity / denoised_ranges[c]
denoised[b][c] = denoised[b][c] * scale_correction
return denoised
tmp_model_options = deepcopy(m.model_options)
if attention_modifiers_global_enabled:
# print(f"{Fore.GREEN}Sigma timings are ignored for global modifiers.{Fore.RESET}")
for atm in attention_modifiers_global:
block_layers = {"input": atm['unet_block_id_input'], "middle": atm['unet_block_id_middle'], "output": atm['unet_block_id_output']}
for unet_block in block_layers:
for unet_block_id in block_layers[unet_block].split(","):
if unet_block_id != "":
unet_block_id = int(unet_block_id)
tmp_model_options = set_model_options_patch_replace(tmp_model_options, attention_modifier(atm['self_attn_mod_eval']).modified_attention, atm['unet_attn'], unet_block, unet_block_id)
m.model_options = tmp_model_options
if not ignore_pre_cfg_func:
m.set_model_sampler_cfg_function(automatic_cfg_function, disable_cfg1_optimization = False)
if subtract_latent_mean:
m.set_model_sampler_post_cfg_function(center_mean_latent_post_cfg)
if latent_intensity_rescale:
m.set_model_sampler_post_cfg_function(rescale_post_cfg)
return (m, args_str, )
class attentionModifierParametersNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"self_attn_mod_eval": ("STRING", {"multiline": True }, {"default": ""}),
"unet_block_id_input": ("STRING", {"multiline": False}, {"default": ""}),
"unet_block_id_middle": ("STRING", {"multiline": False}, {"default": ""}),
"unet_block_id_output": ("STRING", {"multiline": False}, {"default": ""}),
"unet_attn": (["attn1","attn2","both"],),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, join_parameters=None, **kwargs):
info_string = "\n".join([f"{k}: {v}" for k,v in kwargs.items() if v != ""])
if kwargs['unet_attn'] == "both":
copy_kwargs = kwargs.copy()
kwargs['unet_attn'] = "attn1"
copy_kwargs['unet_attn'] = "attn2"
out_modifiers = [kwargs, copy_kwargs]
else:
out_modifiers = [kwargs]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class attentionModifierBruteforceParametersNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"self_attn_mod_eval": ("STRING", {"multiline": True , "default": ""}),
"unet_block_id_input": ("STRING", {"multiline": False, "default": "4,5,7,8"}),
"unet_block_id_middle": ("STRING", {"multiline": False, "default": "0"}),
"unet_block_id_output": ("STRING", {"multiline": False, "default": "0,1,2,3,4,5"}),
"unet_attn": (["attn1","attn2","both"],),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def create_sequence_parameters(self, input_str, middle_str, output_str):
input_values = input_str.split(",") if input_str else []
middle_values = middle_str.split(",") if middle_str else []
output_values = output_str.split(",") if output_str else []
result = []
result.extend([{"unet_block_id_input": val, "unet_block_id_middle": "", "unet_block_id_output": ""} for val in input_values])
result.extend([{"unet_block_id_input": "", "unet_block_id_middle": val, "unet_block_id_output": ""} for val in middle_values])
result.extend([{"unet_block_id_input": "", "unet_block_id_middle": "", "unet_block_id_output": val} for val in output_values])
return result
def exec(self, seed, join_parameters=None, **kwargs):
sequence_parameters = self.create_sequence_parameters(kwargs['unet_block_id_input'],kwargs['unet_block_id_middle'],kwargs['unet_block_id_output'])
lenseq = len(sequence_parameters)
current_index = seed % lenseq
current_sequence = sequence_parameters[current_index]
kwargs["unet_block_id_input"] = current_sequence["unet_block_id_input"]
kwargs["unet_block_id_middle"] = current_sequence["unet_block_id_middle"]
kwargs["unet_block_id_output"] = current_sequence["unet_block_id_output"]
if current_sequence["unet_block_id_input"] != "":
current_block_string = f"unet_block_id_input: {current_sequence['unet_block_id_input']}"
elif current_sequence["unet_block_id_middle"] != "":
current_block_string = f"unet_block_id_middle: {current_sequence['unet_block_id_middle']}"
elif current_sequence["unet_block_id_output"] != "":
current_block_string = f"unet_block_id_output: {current_sequence['unet_block_id_output']}"
info_string = f"Progress: {current_index+1}/{lenseq}\n{kwargs['self_attn_mod_eval']}\n{kwargs['unet_attn']} {current_block_string}"
if kwargs['unet_attn'] == "both":
copy_kwargs = kwargs.copy()
kwargs['unet_attn'] = "attn1"
copy_kwargs['unet_attn'] = "attn2"
out_modifiers = [kwargs, copy_kwargs]
else:
out_modifiers = [kwargs]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class attentionModifierConcatNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"parameters_1": ("ATTNMOD", {"forceInput": True}),
"parameters_2": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD",)
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, parameters_1, parameters_2):
output_parms = parameters_1 + parameters_2
return (output_parms, )
class simpleDynamicCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"hard_mode" : ("BOOLEAN", {"default": True}),
"boost" : ("BOOLEAN", {"default": True}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, hard_mode, boost):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model,
skip_uncond = boost,
uncond_sigma_start = 1000, uncond_sigma_end = 1,
automatic_cfg = "hard" if hard_mode else "soft"
)[0]
return (m, )
class presetLoader:
@classmethod
def INPUT_TYPES(s):
presets_files = [pj.replace(".json","") for pj in os.listdir(json_preset_path) if ".json" in pj and pj not in ["Experimental_temperature.json","do_not_delete.json"]]
presets_files = sorted(presets_files, key=str.lower)
return {"required": {
"model": ("MODEL",),
"preset" : (presets_files, {"default": "Excellent_attention"}),
"uncond_sigma_end": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"use_uncond_sigma_end_from_preset" : ("BOOLEAN", {"default": True}),
"automatic_cfg" : (["From preset","None", "soft", "hard", "hard_squared", "range"],),
},
"optional":{
"join_global_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("MODEL", "STRING", "STRING",)
RETURN_NAMES = ("Model", "Preset name", "Parameters as string",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, preset, uncond_sigma_end, use_uncond_sigma_end_from_preset, automatic_cfg, join_global_parameters=None):
with open(os.path.join(json_preset_path, preset+".json"), 'r', encoding='utf-8') as f:
preset_args = json.load(f)
if not use_uncond_sigma_end_from_preset:
preset_args["uncond_sigma_end"] = uncond_sigma_end
preset_args["fake_uncond_sigma_end"] = uncond_sigma_end
preset_args["fake_uncond_exp_sigma_end"] = uncond_sigma_end
preset_args["uncond_exp_sigma_end"] = uncond_sigma_end
if join_global_parameters is not None:
preset_args["attention_modifiers_global"] = preset_args["attention_modifiers_global"] + join_global_parameters
preset_args["attention_modifiers_global_enabled"] = True
if automatic_cfg != "From preset":
preset_args["automatic_cfg"] = automatic_cfg
advcfg = advancedDynamicCFG()
m = advcfg.patch(model, **preset_args)[0]
info_string = ",\n".join([f"\"{k}\": {v}" for k,v in preset_args.items() if v != ""])
print(f"Preset {Fore.GREEN}{preset}{Fore.RESET} loaded successfully!")
return (m, preset, info_string,)
class simpleDynamicCFGlerpUncond:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"boost" : ("BOOLEAN", {"default": True}),
"negative_strength": ("FLOAT", {"default": 1, "min": 0.0, "max": 5.0, "step": 0.1, "round": 0.1}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, boost, negative_strength):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model,
automatic_cfg="hard", skip_uncond=boost,
uncond_sigma_start = 15, uncond_sigma_end = 1,
lerp_uncond=negative_strength != 1, lerp_uncond_strength=negative_strength,
lerp_uncond_sigma_start = 15, lerp_uncond_sigma_end = 1
)[0]
return (m, )
class postCFGrescaleOnly:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"subtract_latent_mean" : ("BOOLEAN", {"default": True}),
"subtract_latent_mean_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"subtract_latent_mean_sigma_end": ("FLOAT", {"default": 7.5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale" : ("BOOLEAN", {"default": True}),
"latent_intensity_rescale_method" : (["soft","hard","range"], {"default": "hard"},),
"latent_intensity_rescale_cfg" : ("FLOAT", {"default": 8, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_end": ("FLOAT", {"default": 5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/utils"
def patch(self, model,
subtract_latent_mean, subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end,
latent_intensity_rescale, latent_intensity_rescale_method, latent_intensity_rescale_cfg, latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end
):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model,
subtract_latent_mean = subtract_latent_mean,
subtract_latent_mean_sigma_start = subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end = subtract_latent_mean_sigma_end,
latent_intensity_rescale = latent_intensity_rescale, latent_intensity_rescale_cfg = latent_intensity_rescale_cfg, latent_intensity_rescale_method = latent_intensity_rescale_method,
latent_intensity_rescale_sigma_start = latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end = latent_intensity_rescale_sigma_end,
ignore_pre_cfg_func = True
)[0]
return (m, )
class simpleDynamicCFGHighSpeed:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model, automatic_cfg = "hard",
skip_uncond = True, uncond_sigma_start = 7.5, uncond_sigma_end = 1)[0]
return (m, )
class simpleDynamicCFGwarpDrive:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"uncond_sigma_start": ("FLOAT", {"default": 5.5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"fake_uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, uncond_sigma_start, uncond_sigma_end, fake_uncond_sigma_end):
advcfg = advancedDynamicCFG()
print(f" {Fore.CYAN}WARP DRIVE MODE ENGAGED!{Style.RESET_ALL}\n Settings suggestions:\n"
f" {Fore.GREEN}1/1/1: {Fore.YELLOW}Maaaxxxiiimum speeeeeed.{Style.RESET_ALL} {Fore.RED}Uncond disabled.{Style.RESET_ALL} {Fore.MAGENTA}Fasten your seatbelt!{Style.RESET_ALL}\n"
f" {Fore.GREEN}3/1/1: {Fore.YELLOW}Risky space-time continuum distortion.{Style.RESET_ALL} {Fore.MAGENTA}Awesome for prompts with a clear subject!{Style.RESET_ALL}\n"
f" {Fore.GREEN}5.5/1/1: {Fore.YELLOW}Frameshift Drive Autopilot: {Fore.GREEN}Engaged.{Style.RESET_ALL} {Fore.MAGENTA}Should work with anything but do it better and faster!{Style.RESET_ALL}")
m = advcfg.patch(model=model, automatic_cfg = "hard",
skip_uncond = True, uncond_sigma_start = uncond_sigma_start, uncond_sigma_end = uncond_sigma_end,
fake_uncond_sigma_end = fake_uncond_sigma_end, fake_uncond_sigma_start = 1000, fake_uncond_start=True,
fake_uncond_exp=True,fake_uncond_exp_normalize=True,fake_uncond_exp_method="previous_average",
cond_exp = False, cond_exp_sigma_start = 9, cond_exp_sigma_end = uncond_sigma_start, cond_exp_method = "erf", cond_exp_normalize = True,
)[0]
return (m, )
class simpleDynamicCFGunpatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "unpatch"
CATEGORY = "model_patches/Automatic_CFG/utils"
def unpatch(self, model):
m = model.clone()
m.model_options.pop("sampler_pre_cfg_automatic_cfg_function", None)
return (m, )
class simpleDynamicCFGExcellentattentionPatch:
@classmethod
def INPUT_TYPES(s):
inputs = {"required": {
"model": ("MODEL",),
"Auto_CFG": ("BOOLEAN", {"default": True}),
"patch_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 1.0, "round": 0.01}),
"patch_cond": ("BOOLEAN", {"default": True}),
"patch_uncond": ("BOOLEAN", {"default": True}),
"light_patch": ("BOOLEAN", {"default": False}),
"mute_self_input_layer_8_cond": ("BOOLEAN", {"default": False}),
"mute_cross_input_layer_8_cond": ("BOOLEAN", {"default": False}),
"mute_self_input_layer_8_uncond": ("BOOLEAN", {"default": True}),
"mute_cross_input_layer_8_uncond": ("BOOLEAN", {"default": False}),
"uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"bypass_layer_8_instead_of_mute": ("BOOLEAN", {"default": False}),
"save_as_preset": ("BOOLEAN", {"default": False}),
"preset_name": ("STRING", {"multiline": False}),
},
"optional":{
"attn_mod_for_positive_operation": ("ATTNMOD", {"forceInput": True}),
"attn_mod_for_negative_operation": ("ATTNMOD", {"forceInput": True}),
},
}
if "dev_env.txt" in os.listdir(current_dir):
inputs['optional'].update({"attn_mod_for_global_operation": ("ATTNMOD", {"forceInput": True})})
return inputs
RETURN_TYPES = ("MODEL","STRING",)
RETURN_NAMES = ("Model", "Parameters as string",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, Auto_CFG, patch_multiplier, patch_cond, patch_uncond, light_patch,
mute_self_input_layer_8_cond, mute_cross_input_layer_8_cond,
mute_self_input_layer_8_uncond, mute_cross_input_layer_8_uncond,
uncond_sigma_end,bypass_layer_8_instead_of_mute, save_as_preset, preset_name,
attn_mod_for_positive_operation = None, attn_mod_for_negative_operation = None, attn_mod_for_global_operation = None):
parameters_as_string = "Excellent attention:\n" + "\n".join([f"{k}: {v}" for k, v in locals().items() if k not in ["self", "model"]])
with open(os.path.join(json_preset_path, "Excellent_attention.json"), 'r', encoding='utf-8') as f:
patch_parameters = json.load(f)
attn_patch = {"sigma_start": 1000, "sigma_end": 0,
"self_attn_mod_eval": f"normalize_tensor(q+(q-attention_basic(attnbc, k, v, extra_options['n_heads'])))*attnbc.norm()*{patch_multiplier}",
"unet_block_id_input": "", "unet_block_id_middle": "0", "unet_block_id_output": "", "unet_attn": "attn2"}
attn_patch_light = {"sigma_start": 1000, "sigma_end": 0,
"self_attn_mod_eval": f"q*{patch_multiplier}",
"unet_block_id_input": "", "unet_block_id_middle": "0", "unet_block_id_output": "", "unet_attn": "attn2"}
kill_self_input_8 = {
"sigma_start": 1000,
"sigma_end": 0,
"self_attn_mod_eval": "q" if bypass_layer_8_instead_of_mute else "torch.zeros_like(q)",
"unet_block_id_input": "8",
"unet_block_id_middle": "",
"unet_block_id_output": "",
"unet_attn": "attn1"}
kill_cross_input_8 = kill_self_input_8.copy()
kill_cross_input_8['unet_attn'] = "attn2"
attention_modifiers_positive = []
attention_modifiers_fake_negative = []
if patch_cond: attention_modifiers_positive.append(attn_patch) if not light_patch else attention_modifiers_positive.append(attn_patch_light)
if mute_self_input_layer_8_cond: attention_modifiers_positive.append(kill_self_input_8)
if mute_cross_input_layer_8_cond: attention_modifiers_positive.append(kill_cross_input_8)
if patch_uncond: attention_modifiers_fake_negative.append(attn_patch) if not light_patch else attention_modifiers_fake_negative.append(attn_patch_light)
if mute_self_input_layer_8_uncond: attention_modifiers_fake_negative.append(kill_self_input_8)
if mute_cross_input_layer_8_uncond: attention_modifiers_fake_negative.append(kill_cross_input_8)
patch_parameters['attention_modifiers_positive'] = attention_modifiers_positive
patch_parameters['attention_modifiers_fake_negative'] = attention_modifiers_fake_negative
if attn_mod_for_positive_operation is not None:
patch_parameters['attention_modifiers_positive'] = patch_parameters['attention_modifiers_positive'] + attn_mod_for_positive_operation
if attn_mod_for_negative_operation is not None:
patch_parameters['attention_modifiers_fake_negative'] = patch_parameters['attention_modifiers_fake_negative'] + attn_mod_for_negative_operation
if attn_mod_for_global_operation is not None:
patch_parameters["attention_modifiers_global_enabled"] = True
patch_parameters['attention_modifiers_global'] = attn_mod_for_global_operation
patch_parameters["uncond_sigma_end"] = uncond_sigma_end
patch_parameters["fake_uncond_sigma_end"] = uncond_sigma_end
patch_parameters["automatic_cfg"] = "hard" if Auto_CFG else "None"
if save_as_preset:
patch_parameters["save_as_preset"] = save_as_preset
patch_parameters["preset_name"] = preset_name
advcfg = advancedDynamicCFG()
m = advcfg.patch(model, **patch_parameters)[0]
return (m, parameters_as_string, )
class simpleDynamicCFGCustomAttentionPatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"Auto_CFG": ("BOOLEAN", {"default": True}),
"cond_mode" : (["replace_by_custom","normal+(normal-custom_cond)*multiplier","normal+(normal-custom_uncond)*multiplier"],),
"uncond_mode" : (["replace_by_custom","normal+(normal-custom_cond)*multiplier","normal+(normal-custom_uncond)*multiplier"],),
"cond_diff_multiplier": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.1, "round": 0.01}),
"uncond_diff_multiplier": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.1, "round": 0.01}),
"uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000, "step": 0.1, "round": 0.01}),
"save_as_preset": ("BOOLEAN", {"default": False}),
"preset_name": ("STRING", {"multiline": False}),
},
"optional":{
"attn_mod_for_positive_operation": ("ATTNMOD", {"forceInput": True}),
"attn_mod_for_negative_operation": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("Model",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def patch(self, model, Auto_CFG, cond_mode, uncond_mode, cond_diff_multiplier, uncond_diff_multiplier, uncond_sigma_end, save_as_preset, preset_name,
attn_mod_for_positive_operation = [], attn_mod_for_negative_operation = []):
with open(os.path.join(json_preset_path, "do_not_delete.json"), 'r', encoding='utf-8') as f:
patch_parameters = json.load(f)
patch_parameters["cond_exp_value"] = cond_diff_multiplier
patch_parameters["uncond_exp_value"] = uncond_diff_multiplier
if cond_mode != "replace_by_custom":
patch_parameters["disable_cond"] = False
if cond_mode == "normal+(normal-custom_cond)*multiplier":
patch_parameters["cond_exp_method"] = "subtract_attention_modifiers_input_using_cond"
elif cond_mode == "normal+(normal-custom_uncond)*multiplier":
patch_parameters["cond_exp_method"] = "subtract_attention_modifiers_input_using_uncond"
if uncond_mode != "replace_by_custom":
patch_parameters["uncond_sigma_start"] = 1000.0
patch_parameters["fake_uncond_exp"] = False
patch_parameters["uncond_exp"] = True
if uncond_mode == "normal+(normal-custom_cond)*multiplier":
patch_parameters["uncond_exp_method"] = "subtract_attention_modifiers_input_using_cond"
elif uncond_mode == "normal+(normal-custom_uncond)*multiplier":
patch_parameters["uncond_exp_method"] = "subtract_attention_modifiers_input_using_uncond"
if cond_mode != "replace_by_custom" and attn_mod_for_positive_operation != []:
smallest_sigma = min([float(x['sigma_end']) for x in attn_mod_for_positive_operation])
patch_parameters["disable_cond_sigma_end"] = smallest_sigma
patch_parameters["cond_exp_sigma_end"] = smallest_sigma
if uncond_mode != "replace_by_custom" and attn_mod_for_negative_operation != []:
smallest_sigma = min([float(x['sigma_end']) for x in attn_mod_for_negative_operation])
patch_parameters["uncond_exp_sigma_end"] = smallest_sigma
patch_parameters["fake_uncond_start"] = False
# else:
# biggest_sigma = max([float(x['sigma_start']) for x in attn_mod_for_negative_operation])
# patch_parameters["fake_uncond_sigma_start"] = biggest_sigma
patch_parameters["automatic_cfg"] = "hard" if Auto_CFG else "None"
patch_parameters['attention_modifiers_positive'] = attn_mod_for_positive_operation
patch_parameters['attention_modifiers_negative'] = attn_mod_for_negative_operation
patch_parameters['attention_modifiers_fake_negative'] = attn_mod_for_negative_operation
patch_parameters["uncond_sigma_end"] = uncond_sigma_end
patch_parameters["fake_uncond_sigma_end"] = uncond_sigma_end
patch_parameters["save_as_preset"] = save_as_preset
patch_parameters["preset_name"] = preset_name
advcfg = advancedDynamicCFG()
m = advcfg.patch(model, **patch_parameters)[0]
return (m, )
class attentionModifierSingleLayerBypassNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"block_name": (["input","middle","output"],),
"block_number": ("INT", {"default": 0, "min": 0, "max": 12, "step": 1}),
"unet_attn": (["attn1","attn2","both"],),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, sigma_start, sigma_end, block_name, block_number, unet_attn, join_parameters=None):
attn_modifier_dict = {
"sigma_start": sigma_start, "sigma_end": sigma_end,
"self_attn_mod_eval": "q",
"unet_block_id_input": str(block_number) if block_name == "input" else "",
"unet_block_id_middle": str(block_number) if block_name == "middle" else "",
"unet_block_id_output": str(block_number) if block_name == "output" else "",
"unet_attn": f"{unet_attn}"
}
info_string = "\n".join([f"{k}: {v}" for k,v in attn_modifier_dict.items() if v != ""])
if unet_attn == "both":
attn_modifier_dict['unet_attn'] = "attn1"
copy_attn_modifier_dict = attn_modifier_dict.copy()
copy_attn_modifier_dict['unet_attn'] = "attn2"
out_modifiers = [attn_modifier_dict, copy_attn_modifier_dict]
else:
out_modifiers = [attn_modifier_dict]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class attentionModifierSingleLayerTemperatureNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"block_name": (["input","middle","output"],),
"block_number": ("INT", {"default": 0, "min": 0, "max": 12, "step": 1}),
"unet_attn": (["attn1","attn2","both"],),
"temperature": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.01, "round": 0.01}),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, sigma_start, sigma_end, block_name, block_number, unet_attn, temperature, join_parameters=None):
attn_modifier_dict = {
"sigma_start": sigma_start, "sigma_end": sigma_end,
"self_attn_mod_eval": f"temperature_patcher({temperature}).attention_basic_with_temperature(q, k, v, extra_options)",
"unet_block_id_input": str(block_number) if block_name == "input" else "",
"unet_block_id_middle": str(block_number) if block_name == "middle" else "",
"unet_block_id_output": str(block_number) if block_name == "output" else "",
"unet_attn": f"{unet_attn}"
}
info_string = "\n".join([f"{k}: {v}" for k,v in attn_modifier_dict.items() if v != ""])
if unet_attn == "both":
attn_modifier_dict['unet_attn'] = "attn1"
copy_attn_modifier_dict = attn_modifier_dict.copy()
copy_attn_modifier_dict['unet_attn'] = "attn2"
out_modifiers = [attn_modifier_dict, copy_attn_modifier_dict]
else:
out_modifiers = [attn_modifier_dict]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class uncondZeroNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"scale": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01, "round": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, scale):
def custom_patch(args):
cond_pred = args["cond_denoised"]
input_x = args["input"]
if args["sigma"][0] <= 1:
return input_x - cond_pred
cond = input_x - cond_pred
uncond = input_x - torch.zeros_like(cond)
return uncond + scale * (cond - uncond)
m = model.clone()
m.set_model_sampler_cfg_function(custom_patch)
return (m, )
|