Spaces:
Running
on
Zero
Running
on
Zero
File size: 72,494 Bytes
3d5837a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 |
import torch
import numpy as np
from PIL import Image
import json, re, os, io, time
import model_management
import folder_paths
from nodes import MAX_RESOLUTION
from comfy.utils import common_upscale, ProgressBar
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts"))
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
any = AnyType("*")
class INTConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes/constants"
def get_value(self, value):
return (value,)
class FloatConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001}),
},
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes/constants"
def get_value(self, value):
return (value,)
class StringConstant:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string": ("STRING", {"default": '', "multiline": False}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "passtring"
CATEGORY = "KJNodes/constants"
def passtring(self, string):
return (string, )
class StringConstantMultiline:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string": ("STRING", {"default": "", "multiline": True}),
"strip_newlines": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "stringify"
CATEGORY = "KJNodes/constants"
def stringify(self, string, strip_newlines):
new_string = []
for line in io.StringIO(string):
if not line.strip().startswith("\n") and strip_newlines:
line = line.replace("\n", '')
new_string.append(line)
new_string = "\n".join(new_string)
return (new_string, )
class ScaleBatchPromptSchedule:
RETURN_TYPES = ("STRING",)
FUNCTION = "scaleschedule"
CATEGORY = "KJNodes"
DESCRIPTION = """
Scales a batch schedule from Fizz' nodes BatchPromptSchedule
to a different frame count.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_str": ("STRING", {"forceInput": True,"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n"}),
"old_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
"new_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
},
}
def scaleschedule(self, old_frame_count, input_str, new_frame_count):
pattern = r'"(\d+)"\s*:\s*"(.*?)"(?:,|\Z)'
frame_strings = dict(re.findall(pattern, input_str))
# Calculate the scaling factor
scaling_factor = (new_frame_count - 1) / (old_frame_count - 1)
# Initialize a dictionary to store the new frame numbers and strings
new_frame_strings = {}
# Iterate over the frame numbers and strings
for old_frame, string in frame_strings.items():
# Calculate the new frame number
new_frame = int(round(int(old_frame) * scaling_factor))
# Store the new frame number and corresponding string
new_frame_strings[new_frame] = string
# Format the output string
output_str = ', '.join([f'"{k}":"{v}"' for k, v in sorted(new_frame_strings.items())])
return (output_str,)
class GetLatentsFromBatchIndexed:
RETURN_TYPES = ("LATENT",)
FUNCTION = "indexedlatentsfrombatch"
CATEGORY = "KJNodes"
DESCRIPTION = """
Selects and returns the latents at the specified indices as an latent batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latents": ("LATENT",),
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
},
}
def indexedlatentsfrombatch(self, latents, indexes):
samples = latents.copy()
latent_samples = samples["samples"]
# Parse the indexes string into a list of integers
index_list = [int(index.strip()) for index in indexes.split(',')]
# Convert list of indices to a PyTorch tensor
indices_tensor = torch.tensor(index_list, dtype=torch.long)
# Select the latents at the specified indices
chosen_latents = latent_samples[indices_tensor]
samples["samples"] = chosen_latents
return (samples,)
class ConditioningMultiCombine:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}),
"conditioning_1": ("CONDITIONING", ),
"conditioning_2": ("CONDITIONING", ),
},
}
RETURN_TYPES = ("CONDITIONING", "INT")
RETURN_NAMES = ("combined", "inputcount")
FUNCTION = "combine"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Combines multiple conditioning nodes into one
"""
def combine(self, inputcount, **kwargs):
from nodes import ConditioningCombine
cond_combine_node = ConditioningCombine()
cond = kwargs["conditioning_1"]
for c in range(1, inputcount):
new_cond = kwargs[f"conditioning_{c + 1}"]
cond = cond_combine_node.combine(new_cond, cond)[0]
return (cond, inputcount,)
class JoinStrings:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string1": ("STRING", {"default": '', "forceInput": True}),
"string2": ("STRING", {"default": '', "forceInput": True}),
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "joinstring"
CATEGORY = "KJNodes/constants"
def joinstring(self, string1, string2, delimiter):
joined_string = string1 + delimiter + string2
return (joined_string, )
class JoinStringMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"string_1": ("STRING", {"default": '', "forceInput": True}),
"string_2": ("STRING", {"default": '', "forceInput": True}),
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
"return_list": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("string",)
FUNCTION = "combine"
CATEGORY = "KJNodes"
DESCRIPTION = """
Creates single string, or a list of strings, from
multiple input strings.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, delimiter, **kwargs):
string = kwargs["string_1"]
return_list = kwargs["return_list"]
strings = [string] # Initialize a list with the first string
for c in range(1, inputcount):
new_string = kwargs[f"string_{c + 1}"]
if return_list:
strings.append(new_string) # Add new string to the list
else:
string = string + delimiter + new_string
if return_list:
return (strings,) # Return the list of strings
else:
return (string,) # Return the combined string
class CondPassThrough:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
},
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("positive", "negative")
FUNCTION = "passthrough"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Simply passes through the positive and negative conditioning,
workaround for Set node not allowing bypassed inputs.
"""
def passthrough(self, positive, negative):
return (positive, negative,)
class ModelPassThrough:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
},
}
RETURN_TYPES = ("MODEL", )
RETURN_NAMES = ("model",)
FUNCTION = "passthrough"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Simply passes through the model,
workaround for Set node not allowing bypassed inputs.
"""
def passthrough(self, model):
return (model,)
def append_helper(t, mask, c, set_area_to_bounds, strength):
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
class ConditioningSetMaskAndCombine:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, mask_1_strength, mask_2_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
return (c, c2)
class ConditioningSetMaskAndCombine3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
return (c, c2)
class ConditioningSetMaskAndCombine4:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"positive_4": ("CONDITIONING", ),
"negative_4": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_4": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, negative_2, negative_3, negative_4, mask_1, mask_2, mask_3, mask_4, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
if len(mask_4.shape) < 3:
mask_4 = mask_4.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in positive_4:
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
for t in negative_4:
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
return (c, c2)
class ConditioningSetMaskAndCombine5:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"positive_4": ("CONDITIONING", ),
"negative_4": ("CONDITIONING", ),
"positive_5": ("CONDITIONING", ),
"negative_5": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_4": ("MASK", ),
"mask_5": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_5_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, positive_5, negative_2, negative_3, negative_4, negative_5, mask_1, mask_2, mask_3, mask_4, mask_5, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength, mask_5_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
if len(mask_4.shape) < 3:
mask_4 = mask_4.unsqueeze(0)
if len(mask_5.shape) < 3:
mask_5 = mask_5.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in positive_4:
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
for t in positive_5:
append_helper(t, mask_5, c, set_area_to_bounds, mask_5_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
for t in negative_4:
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
for t in negative_5:
append_helper(t, mask_5, c2, set_area_to_bounds, mask_5_strength)
return (c, c2)
class VRAM_Debug:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"empty_cache": ("BOOLEAN", {"default": True}),
"gc_collect": ("BOOLEAN", {"default": True}),
"unload_all_models": ("BOOLEAN", {"default": False}),
},
"optional": {
"any_input": (any, {}),
"image_pass": ("IMAGE",),
"model_pass": ("MODEL",),
}
}
RETURN_TYPES = (any, "IMAGE","MODEL","INT", "INT",)
RETURN_NAMES = ("any_output", "image_pass", "model_pass", "freemem_before", "freemem_after")
FUNCTION = "VRAMdebug"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Returns the inputs unchanged, they are only used as triggers,
and performs comfy model management functions and garbage collection,
reports free VRAM before and after the operations.
"""
def VRAMdebug(self, gc_collect, empty_cache, unload_all_models, image_pass=None, model_pass=None, any_input=None):
freemem_before = model_management.get_free_memory()
print("VRAMdebug: free memory before: ", f"{freemem_before:,.0f}")
if empty_cache:
model_management.soft_empty_cache()
if unload_all_models:
model_management.unload_all_models()
if gc_collect:
import gc
gc.collect()
freemem_after = model_management.get_free_memory()
print("VRAMdebug: free memory after: ", f"{freemem_after:,.0f}")
print("VRAMdebug: freed memory: ", f"{freemem_after - freemem_before:,.0f}")
return {"ui": {
"text": [f"{freemem_before:,.0f}x{freemem_after:,.0f}"]},
"result": (any_input, image_pass, model_pass, freemem_before, freemem_after)
}
class SomethingToString:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input": (any, {}),
},
"optional": {
"prefix": ("STRING", {"default": ""}),
"suffix": ("STRING", {"default": ""}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "stringify"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Converts any type to a string.
"""
def stringify(self, input, prefix="", suffix=""):
if isinstance(input, (int, float, bool)):
stringified = str(input)
elif isinstance(input, list):
stringified = ', '.join(str(item) for item in input)
else:
return
if prefix: # Check if prefix is not empty
stringified = prefix + stringified # Add the prefix
if suffix: # Check if suffix is not empty
stringified = stringified + suffix # Add the suffix
return (stringified,)
class Sleep:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input": (any, {}),
"minutes": ("INT", {"default": 0, "min": 0, "max": 1439}),
"seconds": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 59.99, "step": 0.01}),
},
}
RETURN_TYPES = (any,)
FUNCTION = "sleepdelay"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Delays the execution for the input amount of time.
"""
def sleepdelay(self, input, minutes, seconds):
total_seconds = minutes * 60 + seconds
time.sleep(total_seconds)
return input,
class EmptyLatentImagePresets:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"dimensions": (
[ '512 x 512',
'768 x 512',
'960 x 512',
'1024 x 512',
'1536 x 640',
'1344 x 768',
'1216 x 832',
'1152 x 896',
'1024 x 1024',
],
{
"default": '512 x 512'
}),
"invert": ("BOOLEAN", {"default": False}),
"batch_size": ("INT", {
"default": 1,
"min": 1,
"max": 4096
}),
},
}
RETURN_TYPES = ("LATENT", "INT", "INT")
RETURN_NAMES = ("Latent", "Width", "Height")
FUNCTION = "generate"
CATEGORY = "KJNodes"
def generate(self, dimensions, invert, batch_size):
from nodes import EmptyLatentImage
result = [x.strip() for x in dimensions.split('x')]
if invert:
width = int(result[1].split(' ')[0])
height = int(result[0])
else:
width = int(result[0])
height = int(result[1].split(' ')[0])
latent = EmptyLatentImage().generate(width, height, batch_size)[0]
return (latent, int(width), int(height),)
class WidgetToString:
@classmethod
def IS_CHANGED(cls, **kwargs):
return float("NaN")
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"id": ("INT", {"default": 0}),
"widget_name": ("STRING", {"multiline": False}),
"return_all": ("BOOLEAN", {"default": False}),
},
"optional": {
"any_input": (any, {}),
"node_title": ("STRING", {"multiline": False}),
},
"hidden": {"extra_pnginfo": "EXTRA_PNGINFO",
"prompt": "PROMPT",
"unique_id": "UNIQUE_ID",},
}
RETURN_TYPES = ("STRING", )
FUNCTION = "get_widget_value"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Selects a node and it's specified widget and outputs the value as a string.
If no node id or title is provided it will use the 'any_input' link and use that node.
To see node id's, enable node id display from Manager badge menu.
Alternatively you can search with the node title. Node titles ONLY exist if they
are manually edited!
The 'any_input' is required for making sure the node you want the value from exists in the workflow.
"""
def get_widget_value(self, id, widget_name, extra_pnginfo, prompt, unique_id, return_all=False, any_input=None, node_title=""):
workflow = extra_pnginfo["workflow"]
#print(json.dumps(workflow, indent=4))
results = []
node_id = None # Initialize node_id to handle cases where no match is found
link_id = None
link_to_node_map = {}
for node in workflow["nodes"]:
if node_title:
if "title" in node:
if node["title"] == node_title:
node_id = node["id"]
break
else:
print("Node title not found.")
elif id != 0:
if node["id"] == id:
node_id = id
break
elif any_input is not None:
if node["type"] == "WidgetToString" and node["id"] == int(unique_id) and not link_id:
for node_input in node["inputs"]:
link_id = node_input["link"]
# Construct a map of links to node IDs for future reference
node_outputs = node.get("outputs", None)
if not node_outputs:
continue
for output in node_outputs:
node_links = output.get("links", None)
if not node_links:
continue
for link in node_links:
link_to_node_map[link] = node["id"]
if link_id and link == link_id:
break
if link_id:
node_id = link_to_node_map.get(link_id, None)
if node_id is None:
raise ValueError("No matching node found for the given title or id")
values = prompt[str(node_id)]
if "inputs" in values:
if return_all:
results.append(', '.join(f'{k}: {str(v)}' for k, v in values["inputs"].items()))
elif widget_name in values["inputs"]:
v = str(values["inputs"][widget_name]) # Convert to string here
return (v, )
else:
raise NameError(f"Widget not found: {node_id}.{widget_name}")
if not results:
raise NameError(f"Node not found: {node_id}")
return (', '.join(results).strip(', '), )
class DummyOut:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"any_input": (any, {}),
}
}
RETURN_TYPES = (any,)
FUNCTION = "dummy"
CATEGORY = "KJNodes/misc"
OUTPUT_NODE = True
DESCRIPTION = """
Does nothing, used to trigger generic workflow output.
A way to get previews in the UI without saving anything to disk.
"""
def dummy(self, any_input):
return (any_input,)
class FlipSigmasAdjusted:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"sigmas": ("SIGMAS", ),
"divide_by_last_sigma": ("BOOLEAN", {"default": False}),
"divide_by": ("FLOAT", {"default": 1,"min": 1, "max": 255, "step": 0.01}),
"offset_by": ("INT", {"default": 1,"min": -100, "max": 100, "step": 1}),
}
}
RETURN_TYPES = ("SIGMAS", "STRING",)
RETURN_NAMES = ("SIGMAS", "sigmas_string",)
CATEGORY = "KJNodes/noise"
FUNCTION = "get_sigmas_adjusted"
def get_sigmas_adjusted(self, sigmas, divide_by_last_sigma, divide_by, offset_by):
sigmas = sigmas.flip(0)
if sigmas[0] == 0:
sigmas[0] = 0.0001
adjusted_sigmas = sigmas.clone()
#offset sigma
for i in range(1, len(sigmas)):
offset_index = i - offset_by
if 0 <= offset_index < len(sigmas):
adjusted_sigmas[i] = sigmas[offset_index]
else:
adjusted_sigmas[i] = 0.0001
if adjusted_sigmas[0] == 0:
adjusted_sigmas[0] = 0.0001
if divide_by_last_sigma:
adjusted_sigmas = adjusted_sigmas / adjusted_sigmas[-1]
sigma_np_array = adjusted_sigmas.numpy()
array_string = np.array2string(sigma_np_array, precision=2, separator=', ', threshold=np.inf)
adjusted_sigmas = adjusted_sigmas / divide_by
return (adjusted_sigmas, array_string,)
class CustomSigmas:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"sigmas_string" :("STRING", {"default": "14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029","multiline": True}),
"interpolate_to_steps": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
}
}
RETURN_TYPES = ("SIGMAS",)
RETURN_NAMES = ("SIGMAS",)
CATEGORY = "KJNodes/noise"
FUNCTION = "customsigmas"
DESCRIPTION = """
Creates a sigmas tensor from a string of comma separated values.
Examples:
Nvidia's optimized AYS 10 step schedule for SD 1.5:
14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029
SDXL:
14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029
SVD:
700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002
"""
def customsigmas(self, sigmas_string, interpolate_to_steps):
sigmas_list = sigmas_string.split(', ')
sigmas_float_list = [float(sigma) for sigma in sigmas_list]
sigmas_tensor = torch.FloatTensor(sigmas_float_list)
if len(sigmas_tensor) != interpolate_to_steps + 1:
sigmas_tensor = self.loglinear_interp(sigmas_tensor, interpolate_to_steps + 1)
sigmas_tensor[-1] = 0
return (sigmas_tensor.float(),)
def loglinear_interp(self, t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
t_steps_np = t_steps.numpy()
xs = np.linspace(0, 1, len(t_steps_np))
ys = np.log(t_steps_np[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
interped_ys_tensor = torch.tensor(interped_ys)
return interped_ys_tensor
class InjectNoiseToLatent:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"latents":("LATENT",),
"strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 200.0, "step": 0.0001}),
"noise": ("LATENT",),
"normalize": ("BOOLEAN", {"default": False}),
"average": ("BOOLEAN", {"default": False}),
},
"optional":{
"mask": ("MASK", ),
"mix_randn_amount": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.001}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "injectnoise"
CATEGORY = "KJNodes/noise"
def injectnoise(self, latents, strength, noise, normalize, average, mix_randn_amount=0, seed=None, mask=None):
samples = latents.copy()
if latents["samples"].shape != noise["samples"].shape:
raise ValueError("InjectNoiseToLatent: Latent and noise must have the same shape")
if average:
noised = (samples["samples"].clone() + noise["samples"].clone()) / 2
else:
noised = samples["samples"].clone() + noise["samples"].clone() * strength
if normalize:
noised = noised / noised.std()
if mask is not None:
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noised.shape[2], noised.shape[3]), mode="bilinear")
mask = mask.expand((-1,noised.shape[1],-1,-1))
if mask.shape[0] < noised.shape[0]:
mask = mask.repeat((noised.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:noised.shape[0]]
noised = mask * noised + (1-mask) * latents["samples"]
if mix_randn_amount > 0:
if seed is not None:
generator = torch.manual_seed(seed)
rand_noise = torch.randn(noised.size(), dtype=noised.dtype, layout=noised.layout, generator=generator, device="cpu")
noised = noised + (mix_randn_amount * rand_noise)
samples["samples"] = noised
return (samples,)
class SoundReactive:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sound_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 99999, "step": 0.01}),
"start_range_hz": ("INT", {"default": 150, "min": 0, "max": 9999, "step": 1}),
"end_range_hz": ("INT", {"default": 2000, "min": 0, "max": 9999, "step": 1}),
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 99999, "step": 0.01}),
"smoothing_factor": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"normalize": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("FLOAT","INT",)
RETURN_NAMES =("sound_level", "sound_level_int",)
FUNCTION = "react"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Reacts to the sound level of the input.
Uses your browsers sound input options and requires.
Meant to be used with realtime diffusion with autoqueue.
"""
def react(self, sound_level, start_range_hz, end_range_hz, smoothing_factor, multiplier, normalize):
sound_level *= multiplier
if normalize:
sound_level /= 255
sound_level_int = int(sound_level)
return (sound_level, sound_level_int, )
class GenerateNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"multiplier": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 4096, "step": 0.01}),
"constant_batch_noise": ("BOOLEAN", {"default": False}),
"normalize": ("BOOLEAN", {"default": False}),
},
"optional": {
"model": ("MODEL", ),
"sigmas": ("SIGMAS", ),
"latent_channels": (
[ '4',
'16',
],
),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generatenoise"
CATEGORY = "KJNodes/noise"
DESCRIPTION = """
Generates noise for injection or to be used as empty latents on samplers with add_noise off.
"""
def generatenoise(self, batch_size, width, height, seed, multiplier, constant_batch_noise, normalize, sigmas=None, model=None, latent_channels=4):
generator = torch.manual_seed(seed)
noise = torch.randn([batch_size, int(latent_channels), height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu")
if sigmas is not None:
sigma = sigmas[0] - sigmas[-1]
sigma /= model.model.latent_format.scale_factor
noise *= sigma
noise *=multiplier
if normalize:
noise = noise / noise.std()
if constant_batch_noise:
noise = noise[0].repeat(batch_size, 1, 1, 1)
return ({"samples":noise}, )
def camera_embeddings(elevation, azimuth):
elevation = torch.as_tensor([elevation])
azimuth = torch.as_tensor([azimuth])
embeddings = torch.stack(
[
torch.deg2rad(
(90 - elevation) - (90)
), # Zero123 polar is 90-elevation
torch.sin(torch.deg2rad(azimuth)),
torch.cos(torch.deg2rad(azimuth)),
torch.deg2rad(
90 - torch.full_like(elevation, 0)
),
], dim=-1).unsqueeze(1)
return embeddings
def interpolate_angle(start, end, fraction):
# Calculate the difference in angles and adjust for wraparound if necessary
diff = (end - start + 540) % 360 - 180
# Apply fraction to the difference
interpolated = start + fraction * diff
# Normalize the result to be within the range of -180 to 180
return (interpolated + 180) % 360 - 180
class StableZero123_BatchSchedule:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n7:(0.0),\n15:(0.0)\n", "multiline": True}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "KJNodes/experimental"
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the azimuth input string into a list of tuples
azimuth_points = []
azimuth_points_string = azimuth_points_string.rstrip(',\n')
for point_str in azimuth_points_string.split(','):
frame_str, azimuth_str = point_str.split(':')
frame = int(frame_str.strip())
azimuth = float(azimuth_str.strip()[1:-1])
azimuth_points.append((frame, azimuth))
# Sort the points by frame number
azimuth_points.sort(key=lambda x: x[0])
# Parse the elevation input string into a list of tuples
elevation_points = []
elevation_points_string = elevation_points_string.rstrip(',\n')
for point_str in elevation_points_string.split(','):
frame_str, elevation_str = point_str.split(':')
frame = int(frame_str.strip())
elevation_val = float(elevation_str.strip()[1:-1])
elevation_points.append((frame, elevation_val))
# Sort the points by frame number
elevation_points.sort(key=lambda x: x[0])
# Index of the next point to interpolate towards
next_point = 1
next_elevation_point = 1
positive_cond_out = []
positive_pooled_out = []
negative_cond_out = []
negative_pooled_out = []
#azimuth interpolation
for i in range(batch_size):
# Find the interpolated azimuth for the current frame
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
next_point += 1
# If next_point is equal to the length of points, we've gone past the last point
if next_point == len(azimuth_points):
next_point -= 1 # Set next_point to the last index of points
prev_point = max(next_point - 1, 0) # Ensure prev_point is not less than 0
# Calculate fraction
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: # Prevent division by zero
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
# Use the new interpolate_angle function
interpolated_azimuth = interpolate_angle(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
else:
interpolated_azimuth = azimuth_points[prev_point][1]
# Interpolate the elevation
next_elevation_point = 1
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
next_elevation_point += 1
if next_elevation_point == len(elevation_points):
next_elevation_point -= 1
prev_elevation_point = max(next_elevation_point - 1, 0)
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_elevation = interpolate_angle(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
else:
interpolated_elevation = elevation_points[prev_elevation_point][1]
cam_embeds = camera_embeddings(interpolated_elevation, interpolated_azimuth)
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
positive_pooled_out.append(t)
positive_cond_out.append(cond)
negative_pooled_out.append(torch.zeros_like(t))
negative_cond_out.append(torch.zeros_like(pooled))
# Concatenate the conditions and pooled outputs
final_positive_cond = torch.cat(positive_cond_out, dim=0)
final_positive_pooled = torch.cat(positive_pooled_out, dim=0)
final_negative_cond = torch.cat(negative_cond_out, dim=0)
final_negative_pooled = torch.cat(negative_pooled_out, dim=0)
# Structure the final output
final_positive = [[final_positive_cond, {"concat_latent_image": final_positive_pooled}]]
final_negative = [[final_negative_cond, {"concat_latent_image": final_negative_pooled}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (final_positive, final_negative, {"samples": latent})
def linear_interpolate(start, end, fraction):
return start + (end - start) * fraction
class SV3D_BatchSchedule:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 21, "min": 1, "max": 4096}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n9:(180.0),\n20:(360.0)\n", "multiline": True}),
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n9:(0.0),\n20:(0.0)\n", "multiline": True}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Allow scheduling of the azimuth and elevation conditions for SV3D.
Note that SV3D is still a video model and the schedule needs to always go forward
https://huggingface.co/stabilityai/sv3d
"""
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the azimuth input string into a list of tuples
azimuth_points = []
azimuth_points_string = azimuth_points_string.rstrip(',\n')
for point_str in azimuth_points_string.split(','):
frame_str, azimuth_str = point_str.split(':')
frame = int(frame_str.strip())
azimuth = float(azimuth_str.strip()[1:-1])
azimuth_points.append((frame, azimuth))
# Sort the points by frame number
azimuth_points.sort(key=lambda x: x[0])
# Parse the elevation input string into a list of tuples
elevation_points = []
elevation_points_string = elevation_points_string.rstrip(',\n')
for point_str in elevation_points_string.split(','):
frame_str, elevation_str = point_str.split(':')
frame = int(frame_str.strip())
elevation_val = float(elevation_str.strip()[1:-1])
elevation_points.append((frame, elevation_val))
# Sort the points by frame number
elevation_points.sort(key=lambda x: x[0])
# Index of the next point to interpolate towards
next_point = 1
next_elevation_point = 1
elevations = []
azimuths = []
# For azimuth interpolation
for i in range(batch_size):
# Find the interpolated azimuth for the current frame
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
next_point += 1
if next_point == len(azimuth_points):
next_point -= 1
prev_point = max(next_point - 1, 0)
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]:
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
# Apply the ease function to the fraction
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_azimuth = linear_interpolate(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
else:
interpolated_azimuth = azimuth_points[prev_point][1]
# Interpolate the elevation
next_elevation_point = 1
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
next_elevation_point += 1
if next_elevation_point == len(elevation_points):
next_elevation_point -= 1
prev_elevation_point = max(next_elevation_point - 1, 0)
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
# Apply the ease function to the fraction
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_elevation = linear_interpolate(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
else:
interpolated_elevation = elevation_points[prev_elevation_point][1]
azimuths.append(interpolated_azimuth)
elevations.append(interpolated_elevation)
#print("azimuths", azimuths)
#print("elevations", elevations)
# Structure the final output
final_positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
final_negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t),"elevation": elevations, "azimuth": azimuths}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (final_positive, final_negative, {"samples": latent})
class LoadResAdapterNormalization:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"resadapter_path": (folder_paths.get_filename_list("checkpoints"), )
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_res_adapter"
CATEGORY = "KJNodes/experimental"
def load_res_adapter(self, model, resadapter_path):
print("ResAdapter: Checking ResAdapter path")
resadapter_full_path = folder_paths.get_full_path("checkpoints", resadapter_path)
if not os.path.exists(resadapter_full_path):
raise Exception("Invalid model path")
else:
print("ResAdapter: Loading ResAdapter normalization weights")
from comfy.utils import load_torch_file
prefix_to_remove = 'diffusion_model.'
model_clone = model.clone()
norm_state_dict = load_torch_file(resadapter_full_path)
new_values = {key[len(prefix_to_remove):]: value for key, value in norm_state_dict.items() if key.startswith(prefix_to_remove)}
print("ResAdapter: Attempting to add patches with ResAdapter weights")
try:
for key in model.model.diffusion_model.state_dict().keys():
if key in new_values:
original_tensor = model.model.diffusion_model.state_dict()[key]
new_tensor = new_values[key].to(model.model.diffusion_model.dtype)
if original_tensor.shape == new_tensor.shape:
model_clone.add_object_patch(f"diffusion_model.{key}.data", new_tensor)
else:
print("ResAdapter: No match for key: ",key)
except:
raise Exception("Could not patch model, this way of patching was added to ComfyUI on March 3rd 2024, is your ComfyUI up to date?")
print("ResAdapter: Added resnet normalization patches")
return (model_clone, )
class Superprompt:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instruction_prompt": ("STRING", {"default": 'Expand the following prompt to add more detail', "multiline": True}),
"prompt": ("STRING", {"default": '', "multiline": True, "forceInput": True}),
"max_new_tokens": ("INT", {"default": 128, "min": 1, "max": 4096, "step": 1}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "process"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
# SuperPrompt
A T5 model fine-tuned on the SuperPrompt dataset for
upsampling text prompts to more detailed descriptions.
Meant to be used as a pre-generation step for text-to-image
models that benefit from more detailed prompts.
https://huggingface.co/roborovski/superprompt-v1
"""
def process(self, instruction_prompt, prompt, max_new_tokens):
device = model_management.get_torch_device()
from transformers import T5Tokenizer, T5ForConditionalGeneration
checkpoint_path = os.path.join(script_directory, "models","superprompt-v1")
if not os.path.exists(checkpoint_path):
print(f"Downloading model to: {checkpoint_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="roborovski/superprompt-v1",
local_dir=checkpoint_path,
local_dir_use_symlinks=False)
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small", legacy=False)
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path, device_map=device)
model.to(device)
input_text = instruction_prompt + ": " + prompt
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
out = (tokenizer.decode(outputs[0]))
out = out.replace('<pad>', '')
out = out.replace('</s>', '')
return (out, )
class CameraPoseVisualizer:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pose_file_path": ("STRING", {"default": '', "multiline": False}),
"base_xval": ("FLOAT", {"default": 0.2,"min": 0, "max": 100, "step": 0.01}),
"zval": ("FLOAT", {"default": 0.3,"min": 0, "max": 100, "step": 0.01}),
"scale": ("FLOAT", {"default": 1.0,"min": 0.01, "max": 10.0, "step": 0.01}),
"use_exact_fx": ("BOOLEAN", {"default": False}),
"relative_c2w": ("BOOLEAN", {"default": True}),
"use_viewer": ("BOOLEAN", {"default": False}),
},
"optional": {
"cameractrl_poses": ("CAMERACTRL_POSES", {"default": None}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "plot"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Visualizes the camera poses, from Animatediff-Evolved CameraCtrl Pose
or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot.
"""
def plot(self, pose_file_path, scale, base_xval, zval, use_exact_fx, relative_c2w, use_viewer, cameractrl_poses=None):
import matplotlib as mpl
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor
x_min = -2.0 * scale
x_max = 2.0 * scale
y_min = -2.0 * scale
y_max = 2.0 * scale
z_min = -2.0 * scale
z_max = 2.0 * scale
plt.rcParams['text.color'] = '#999999'
self.fig = plt.figure(figsize=(18, 7))
self.fig.patch.set_facecolor('#353535')
self.ax = self.fig.add_subplot(projection='3d')
self.ax.set_facecolor('#353535') # Set the background color here
self.ax.grid(color='#999999', linestyle='-', linewidth=0.5)
self.plotly_data = None # plotly data traces
self.ax.set_aspect("auto")
self.ax.set_xlim(x_min, x_max)
self.ax.set_ylim(y_min, y_max)
self.ax.set_zlim(z_min, z_max)
self.ax.set_xlabel('x', color='#999999')
self.ax.set_ylabel('y', color='#999999')
self.ax.set_zlabel('z', color='#999999')
for text in self.ax.get_xticklabels() + self.ax.get_yticklabels() + self.ax.get_zticklabels():
text.set_color('#999999')
print('initialize camera pose visualizer')
if pose_file_path != "":
with open(pose_file_path, 'r') as f:
poses = f.readlines()
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[7:]]).reshape(3, 4) for pose in poses[1:]]
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]]
#print(poses)
elif cameractrl_poses is not None:
poses = cameractrl_poses
w2cs = [np.array(pose[7:]).reshape(3, 4) for pose in cameractrl_poses]
fxs = [pose[1] for pose in cameractrl_poses]
else:
raise ValueError("Please provide either pose_file_path or cameractrl_poses")
total_frames = len(w2cs)
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4)
last_row = np.zeros((1, 4))
last_row[0, -1] = 1.0
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs]
c2ws = self.get_c2w(w2cs, transform_matrix, relative_c2w)
for frame_idx, c2w in enumerate(c2ws):
self.extrinsic2pyramid(c2w, frame_idx / total_frames, hw_ratio=1/1, base_xval=base_xval,
zval=(fxs[frame_idx] if use_exact_fx else zval))
# Create the colorbar
cmap = mpl.cm.rainbow
norm = mpl.colors.Normalize(vmin=0, vmax=total_frames)
colorbar = self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical')
# Change the colorbar label
colorbar.set_label('Frame', color='#999999') # Change the label and its color
# Change the tick colors
colorbar.ax.yaxis.set_tick_params(colors='#999999') # Change the tick color
# Change the tick frequency
# Assuming you want to set the ticks at every 10th frame
ticks = np.arange(0, total_frames, 10)
colorbar.ax.yaxis.set_ticks(ticks)
plt.title('')
plt.draw()
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
img = Image.open(buf)
tensor_img = ToTensor()(img)
buf.close()
tensor_img = tensor_img.permute(1, 2, 0).unsqueeze(0)
if use_viewer:
time.sleep(1)
plt.show()
return (tensor_img,)
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
vertex_std = np.array([[0, 0, 0, 1],
[base_xval, -base_xval * hw_ratio, zval, 1],
[base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, -base_xval * hw_ratio, zval, 1]])
vertex_transformed = vertex_std @ extrinsic.T
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]],
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]]
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map)
self.ax.add_collection3d(
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.25))
def customize_legend(self, list_label):
from matplotlib.patches import Patch
import matplotlib.pyplot as plt
list_handle = []
for idx, label in enumerate(list_label):
color = plt.cm.rainbow(idx / len(list_label))
patch = Patch(color=color, label=label)
list_handle.append(patch)
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle)
def get_c2w(self, w2cs, transform_matrix, relative_c2w):
if relative_c2w:
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]]
else:
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs]
ret_poses = [transform_matrix @ x for x in ret_poses]
return np.array(ret_poses, dtype=np.float32)
class StabilityAPI_SD3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"multiline": True}),
"n_prompt": ("STRING", {"multiline": True}),
"seed": ("INT", {"default": 123,"min": 0, "max": 4294967294, "step": 1}),
"model": (
[
'sd3',
'sd3-turbo',
],
{
"default": 'sd3'
}),
"aspect_ratio": (
[
'1:1',
'16:9',
'21:9',
'2:3',
'3:2',
'4:5',
'5:4',
'9:16',
'9:21',
],
{
"default": '1:1'
}),
"output_format": (
[
'png',
'jpeg',
],
{
"default": 'jpeg'
}),
},
"optional": {
"api_key": ("STRING", {"multiline": True}),
"image": ("IMAGE",),
"img2img_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"disable_metadata": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apicall"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
## Calls StabilityAI API
Although you may have multiple keys in your account,
you should use the same key for all requests to this API.
Get your API key here: https://platform.stability.ai/account/keys
Recommended to set the key in the config.json -file under this
node packs folder.
# WARNING:
Otherwise the API key may get saved in the image metadata even
with "disable_metadata" on if the workflow includes save nodes
separate from this node.
sd3 requires 6.5 credits per generation
sd3-turbo requires 4 credits per generation
If no image is provided, mode is set to text-to-image
"""
def apicall(self, prompt, n_prompt, model, seed, aspect_ratio, output_format,
img2img_strength=0.5, image=None, disable_metadata=True, api_key=""):
from comfy.cli_args import args
if disable_metadata:
args.disable_metadata = True
else:
args.disable_metadata = False
import requests
from torchvision import transforms
data = {
"mode": "text-to-image",
"prompt": prompt,
"model": model,
"seed": seed,
"output_format": output_format
}
if image is not None:
image = image.permute(0, 3, 1, 2).squeeze(0)
to_pil = transforms.ToPILImage()
pil_image = to_pil(image)
# Save the PIL Image to a BytesIO object
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
buffer.seek(0)
files = {"image": ("image.png", buffer, "image/png")}
data["mode"] = "image-to-image"
data["image"] = pil_image
data["strength"] = img2img_strength
else:
data["aspect_ratio"] = aspect_ratio,
files = {"none": ''}
if model != "sd3-turbo":
data["negative_prompt"] = n_prompt
headers={
"accept": "image/*"
}
if api_key != "":
headers["authorization"] = api_key
else:
config_file_path = os.path.join(script_directory,"config.json")
with open(config_file_path, 'r') as file:
config = json.load(file)
api_key_from_config = config.get("sai_api_key")
headers["authorization"] = api_key_from_config
response = requests.post(
f"https://api.stability.ai/v2beta/stable-image/generate/sd3",
headers=headers,
files = files,
data = data,
)
if response.status_code == 200:
# Convert the response content to a PIL Image
image = Image.open(io.BytesIO(response.content))
# Convert the PIL Image to a PyTorch tensor
transform = transforms.ToTensor()
tensor_image = transform(image)
tensor_image = tensor_image.unsqueeze(0)
tensor_image = tensor_image.permute(0, 2, 3, 1).cpu().float()
return (tensor_image,)
else:
try:
# Attempt to parse the response as JSON
error_data = response.json()
raise Exception(f"Server error: {error_data}")
except json.JSONDecodeError:
# If the response is not valid JSON, raise a different exception
raise Exception(f"Server error: {response.text}")
class CheckpointPerturbWeights:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"joint_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"final_layer": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"rest_of_the_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "mod"
OUTPUT_NODE = True
CATEGORY = "KJNodes/experimental"
def mod(self, seed, model, joint_blocks, final_layer, rest_of_the_blocks):
import copy
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
device = model_management.get_torch_device()
model_copy = copy.deepcopy(model)
model_copy.model.to(device)
keys = model_copy.model.diffusion_model.state_dict().keys()
dict = {}
for key in keys:
dict[key] = model_copy.model.diffusion_model.state_dict()[key]
pbar = ProgressBar(len(keys))
for k in keys:
v = dict[k]
print(f'{k}: {v.std()}')
if k.startswith('joint_blocks'):
multiplier = joint_blocks
elif k.startswith('final_layer'):
multiplier = final_layer
else:
multiplier = rest_of_the_blocks
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device)
pbar.update(1)
model_copy.model.diffusion_model.load_state_dict(dict)
return model_copy, |