Spaces:
Running
on
Zero
Running
on
Zero
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py | |
#under Apache 2 license | |
import torch | |
import numpy as np | |
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis). | |
############################# | |
### Utils for DEIS solver ### | |
############################# | |
#---------------------------------------------------------------------------- | |
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS. | |
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80): | |
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5 | |
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d | |
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1) | |
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d | |
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu()) | |
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min | |
#---------------------------------------------------------------------------- | |
def cal_poly(prev_t, j, taus): | |
poly = 1 | |
for k in range(prev_t.shape[0]): | |
if k == j: | |
continue | |
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k]) | |
return poly | |
#---------------------------------------------------------------------------- | |
# Transfer from t to alpha_t. | |
def t2alpha_fn(beta_0, beta_1, t): | |
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0) | |
#---------------------------------------------------------------------------- | |
def cal_intergrand(beta_0, beta_1, taus): | |
with torch.inference_mode(mode=False): | |
taus = taus.clone() | |
beta_0 = beta_0.clone() | |
beta_1 = beta_1.clone() | |
with torch.enable_grad(): | |
taus.requires_grad_(True) | |
alpha = t2alpha_fn(beta_0, beta_1, taus) | |
log_alpha = alpha.log() | |
log_alpha.sum().backward() | |
d_log_alpha_dtau = taus.grad | |
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha)) | |
return integrand | |
#---------------------------------------------------------------------------- | |
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'): | |
""" | |
Get the coefficient list for DEIS sampling. | |
Args: | |
t_steps: A pytorch tensor. The time steps for sampling. | |
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4 | |
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'. | |
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS. | |
Returns: | |
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True. | |
""" | |
if deis_mode == 'tab': | |
t_steps, beta_0, beta_1 = edm2t(t_steps) | |
C = [] | |
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): | |
order = min(i+1, max_order) | |
if order == 1: | |
C.append([]) | |
else: | |
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation | |
dtau = (t_next - t_cur) / N | |
prev_t = t_steps[[i - k for k in range(order)]] | |
coeff_temp = [] | |
integrand = cal_intergrand(beta_0, beta_1, taus) | |
for j in range(order): | |
poly = cal_poly(prev_t, j, taus) | |
coeff_temp.append(torch.sum(integrand * poly) * dtau) | |
C.append(coeff_temp) | |
elif deis_mode == 'rhoab': | |
# Analytical solution, second order | |
def get_def_intergral_2(a, b, start, end, c): | |
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b | |
return coeff / ((c - a) * (c - b)) | |
# Analytical solution, third order | |
def get_def_intergral_3(a, b, c, start, end, d): | |
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \ | |
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c | |
return coeff / ((d - a) * (d - b) * (d - c)) | |
C = [] | |
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): | |
order = min(i, max_order) | |
if order == 0: | |
C.append([]) | |
else: | |
prev_t = t_steps[[i - k for k in range(order+1)]] | |
if order == 1: | |
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1])) | |
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur)) | |
coeff_temp = [coeff_cur, coeff_prev1] | |
elif order == 2: | |
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur) | |
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1]) | |
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2]) | |
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2] | |
elif order == 3: | |
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur) | |
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1]) | |
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2]) | |
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3]) | |
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3] | |
C.append(coeff_temp) | |
return C | |