flatcherlee's picture
Upload 2334 files
3d5837a verified
raw
history blame
11 kB
# to be used with https://github.com/a1lazydog/ComfyUI-AudioScheduler
import torch
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw
import numpy as np
from ..utility.utility import pil2tensor
from nodes import MAX_RESOLUTION
class NormalizedAmplitudeToMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}),
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape": (
[
'none',
'circle',
'square',
'triangle',
],
{
"default": 'none'
}),
"color": (
[
'white',
'amplitude',
],
{
"default": 'amplitude'
}),
},}
CATEGORY = "KJNodes/audio"
RETURN_TYPES = ("MASK",)
FUNCTION = "convert"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Creates masks based on the normalized amplitude.
"""
def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
# Offset the amplitude values by rolling the array
normalized_amp = np.roll(normalized_amp, frame_offset)
# Initialize an empty list to hold the image tensors
out = []
# Iterate over each amplitude value to create an image
for amp in normalized_amp:
# Scale the amplitude value to cover the full range of grayscale values
if color == 'amplitude':
grayscale_value = int(amp * 255)
elif color == 'white':
grayscale_value = 255
# Convert the grayscale value to an RGB format
gray_color = (grayscale_value, grayscale_value, grayscale_value)
finalsize = size * amp
if shape == 'none':
shapeimage = Image.new("RGB", (width, height), gray_color)
else:
shapeimage = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(shapeimage)
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - finalsize, location_y - finalsize)
right_down_point = (location_x + finalsize,location_y + finalsize)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=gray_color)
elif shape == 'square':
draw.rectangle(two_points, fill=gray_color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - finalsize, location_y + finalsize) # bottom left
right_down_point = (location_x + finalsize, location_y + finalsize) # bottom right
top_point = (location_x, location_y) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color)
shapeimage = pil2tensor(shapeimage)
mask = shapeimage[:, :, :, 0]
out.append(mask)
return (torch.cat(out, dim=0),)
class NormalizedAmplitudeToFloatList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
},}
CATEGORY = "KJNodes/audio"
RETURN_TYPES = ("FLOAT",)
FUNCTION = "convert"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Creates a list of floats from the normalized amplitude.
"""
def convert(self, normalized_amp):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
return (normalized_amp.tolist(),)
class OffsetMaskByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"mask": ("MASK",),
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"rotate": ("BOOLEAN", { "default": False }),
"angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "offset"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Offsets masks based on the normalized amplitude.
"""
def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp):
# Ensure normalized_amp is an array and within the range [0, 1]
offsetmask = mask.clone()
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
batch_size, height, width = mask.shape
if rotate:
for i in range(batch_size):
rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier))
rotation_angle = rotation_amp
offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0)
if x != 0 or y != 0:
for i in range(batch_size):
offset_amp = normalized_amp[i] * 10
shift_x = min(x*offset_amp, width-1)
shift_y = min(y*offset_amp, height-1)
if shift_x != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1)
if shift_y != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0)
return offsetmask,
class ImageTransformByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
"x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"cumulative": ("BOOLEAN", { "default": False }),
"image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "amptransform"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Transforms image based on the normalized amplitude.
"""
def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
transformed_images = []
# Initialize the cumulative zoom factor
prev_amp = 0.0
for i in range(image.shape[0]):
img = image[i] # Get the i-th image in the batch
amp = normalized_amp[i] # Get the corresponding amplitude value
# Incrementally increase the cumulative zoom factor
if cumulative:
prev_amp += amp
amp += prev_amp
# Convert the image tensor from BxHxWxC to CxHxW format expected by torchvision
img = img.permute(2, 0, 1)
# Convert PyTorch tensor to PIL Image for processing
pil_img = TF.to_pil_image(img)
# Calculate the crop size based on the amplitude
width, height = pil_img.size
crop_size = int(min(width, height) * (1 - amp * zoom_scale))
crop_size = max(crop_size, 1)
# Calculate the crop box coordinates (centered crop)
left = (width - crop_size) // 2
top = (height - crop_size) // 2
right = (width + crop_size) // 2
bottom = (height + crop_size) // 2
# Crop and resize back to original size
cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size)
resized_img = TF.resize(cropped_img, (height, width))
# Convert back to tensor in CxHxW format
tensor_img = TF.to_tensor(resized_img)
# Convert the tensor back to BxHxWxC format
tensor_img = tensor_img.permute(1, 2, 0)
# Offset the image based on the amplitude
offset_amp = amp * 10 # Calculate the offset magnitude based on the amplitude
shift_x = min(x_offset * offset_amp, img.shape[1] - 1) # Calculate the shift in x direction
shift_y = min(y_offset * offset_amp, img.shape[0] - 1) # Calculate the shift in y direction
# Apply the offset to the image tensor
if shift_x != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1)
if shift_y != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0)
# Add to the list
transformed_images.append(tensor_img)
# Stack all transformed images into a batch
transformed_batch = torch.stack(transformed_images)
return (transformed_batch,)