Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import copy | |
import logging | |
import threading | |
import heapq | |
import time | |
import traceback | |
import inspect | |
from typing import List, Literal, NamedTuple, Optional | |
import torch | |
import nodes | |
import comfy.model_management | |
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}): | |
valid_inputs = class_def.INPUT_TYPES() | |
input_data_all = {} | |
for x in inputs: | |
input_data = inputs[x] | |
if isinstance(input_data, list): | |
input_unique_id = input_data[0] | |
output_index = input_data[1] | |
if input_unique_id not in outputs: | |
input_data_all[x] = (None,) | |
continue | |
obj = outputs[input_unique_id][output_index] | |
input_data_all[x] = obj | |
else: | |
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]): | |
input_data_all[x] = [input_data] | |
if "hidden" in valid_inputs: | |
h = valid_inputs["hidden"] | |
for x in h: | |
if h[x] == "PROMPT": | |
input_data_all[x] = [prompt] | |
if h[x] == "EXTRA_PNGINFO": | |
input_data_all[x] = [extra_data.get('extra_pnginfo', None)] | |
if h[x] == "UNIQUE_ID": | |
input_data_all[x] = [unique_id] | |
return input_data_all | |
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False): | |
# check if node wants the lists | |
input_is_list = False | |
if hasattr(obj, "INPUT_IS_LIST"): | |
input_is_list = obj.INPUT_IS_LIST | |
if len(input_data_all) == 0: | |
max_len_input = 0 | |
else: | |
max_len_input = max([len(x) for x in input_data_all.values()]) | |
# get a slice of inputs, repeat last input when list isn't long enough | |
def slice_dict(d, i): | |
d_new = dict() | |
for k,v in d.items(): | |
d_new[k] = v[i if len(v) > i else -1] | |
return d_new | |
results = [] | |
if input_is_list: | |
if allow_interrupt: | |
nodes.before_node_execution() | |
results.append(getattr(obj, func)(**input_data_all)) | |
elif max_len_input == 0: | |
if allow_interrupt: | |
nodes.before_node_execution() | |
results.append(getattr(obj, func)()) | |
else: | |
for i in range(max_len_input): | |
if allow_interrupt: | |
nodes.before_node_execution() | |
results.append(getattr(obj, func)(**slice_dict(input_data_all, i))) | |
return results | |
def get_output_data(obj, input_data_all): | |
results = [] | |
uis = [] | |
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True) | |
for r in return_values: | |
if isinstance(r, dict): | |
if 'ui' in r: | |
uis.append(r['ui']) | |
if 'result' in r: | |
results.append(r['result']) | |
else: | |
results.append(r) | |
output = [] | |
if len(results) > 0: | |
# check which outputs need concatenating | |
output_is_list = [False] * len(results[0]) | |
if hasattr(obj, "OUTPUT_IS_LIST"): | |
output_is_list = obj.OUTPUT_IS_LIST | |
# merge node execution results | |
for i, is_list in zip(range(len(results[0])), output_is_list): | |
if is_list: | |
output.append([x for o in results for x in o[i]]) | |
else: | |
output.append([o[i] for o in results]) | |
ui = dict() | |
if len(uis) > 0: | |
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()} | |
return output, ui | |
def format_value(x): | |
if x is None: | |
return None | |
elif isinstance(x, (int, float, bool, str)): | |
return x | |
else: | |
return str(x) | |
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui, object_storage): | |
unique_id = current_item | |
inputs = prompt[unique_id]['inputs'] | |
class_type = prompt[unique_id]['class_type'] | |
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] | |
if unique_id in outputs: | |
return (True, None, None) | |
for x in inputs: | |
input_data = inputs[x] | |
if isinstance(input_data, list): | |
input_unique_id = input_data[0] | |
output_index = input_data[1] | |
if input_unique_id not in outputs: | |
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui, object_storage) | |
if result[0] is not True: | |
# Another node failed further upstream | |
return result | |
input_data_all = None | |
try: | |
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data) | |
if server.client_id is not None: | |
server.last_node_id = unique_id | |
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id) | |
obj = object_storage.get((unique_id, class_type), None) | |
if obj is None: | |
obj = class_def() | |
object_storage[(unique_id, class_type)] = obj | |
output_data, output_ui = get_output_data(obj, input_data_all) | |
outputs[unique_id] = output_data | |
if len(output_ui) > 0: | |
outputs_ui[unique_id] = output_ui | |
if server.client_id is not None: | |
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) | |
except comfy.model_management.InterruptProcessingException as iex: | |
logging.info("Processing interrupted") | |
# skip formatting inputs/outputs | |
error_details = { | |
"node_id": unique_id, | |
} | |
return (False, error_details, iex) | |
except Exception as ex: | |
typ, _, tb = sys.exc_info() | |
exception_type = full_type_name(typ) | |
input_data_formatted = {} | |
if input_data_all is not None: | |
input_data_formatted = {} | |
for name, inputs in input_data_all.items(): | |
input_data_formatted[name] = [format_value(x) for x in inputs] | |
output_data_formatted = {} | |
for node_id, node_outputs in outputs.items(): | |
output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs] | |
logging.error(f"!!! Exception during processing!!! {ex}") | |
logging.error(traceback.format_exc()) | |
error_details = { | |
"node_id": unique_id, | |
"exception_message": str(ex), | |
"exception_type": exception_type, | |
"traceback": traceback.format_tb(tb), | |
"current_inputs": input_data_formatted, | |
"current_outputs": output_data_formatted | |
} | |
if isinstance(ex, comfy.model_management.OOM_EXCEPTION): | |
logging.error("Got an OOM, unloading all loaded models.") | |
comfy.model_management.unload_all_models() | |
return (False, error_details, ex) | |
executed.add(unique_id) | |
return (True, None, None) | |
def recursive_will_execute(prompt, outputs, current_item, memo={}): | |
unique_id = current_item | |
if unique_id in memo: | |
return memo[unique_id] | |
inputs = prompt[unique_id]['inputs'] | |
will_execute = [] | |
if unique_id in outputs: | |
return [] | |
for x in inputs: | |
input_data = inputs[x] | |
if isinstance(input_data, list): | |
input_unique_id = input_data[0] | |
output_index = input_data[1] | |
if input_unique_id not in outputs: | |
will_execute += recursive_will_execute(prompt, outputs, input_unique_id, memo) | |
memo[unique_id] = will_execute + [unique_id] | |
return memo[unique_id] | |
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item): | |
unique_id = current_item | |
inputs = prompt[unique_id]['inputs'] | |
class_type = prompt[unique_id]['class_type'] | |
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] | |
is_changed_old = '' | |
is_changed = '' | |
to_delete = False | |
if hasattr(class_def, 'IS_CHANGED'): | |
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]: | |
is_changed_old = old_prompt[unique_id]['is_changed'] | |
if 'is_changed' not in prompt[unique_id]: | |
input_data_all = get_input_data(inputs, class_def, unique_id, outputs) | |
if input_data_all is not None: | |
try: | |
#is_changed = class_def.IS_CHANGED(**input_data_all) | |
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED") | |
prompt[unique_id]['is_changed'] = is_changed | |
except: | |
to_delete = True | |
else: | |
is_changed = prompt[unique_id]['is_changed'] | |
if unique_id not in outputs: | |
return True | |
if not to_delete: | |
if is_changed != is_changed_old: | |
to_delete = True | |
elif unique_id not in old_prompt: | |
to_delete = True | |
elif class_type != old_prompt[unique_id]['class_type']: | |
to_delete = True | |
elif inputs == old_prompt[unique_id]['inputs']: | |
for x in inputs: | |
input_data = inputs[x] | |
if isinstance(input_data, list): | |
input_unique_id = input_data[0] | |
output_index = input_data[1] | |
if input_unique_id in outputs: | |
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id) | |
else: | |
to_delete = True | |
if to_delete: | |
break | |
else: | |
to_delete = True | |
if to_delete: | |
d = outputs.pop(unique_id) | |
del d | |
return to_delete | |
class PromptExecutor: | |
def __init__(self, server): | |
self.server = server | |
self.reset() | |
def reset(self): | |
self.outputs = {} | |
self.object_storage = {} | |
self.outputs_ui = {} | |
self.status_messages = [] | |
self.success = True | |
self.old_prompt = {} | |
def add_message(self, event, data: dict, broadcast: bool): | |
data = { | |
**data, | |
"timestamp": int(time.time() * 1000), | |
} | |
self.status_messages.append((event, data)) | |
if self.server.client_id is not None or broadcast: | |
self.server.send_sync(event, data, self.server.client_id) | |
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex): | |
node_id = error["node_id"] | |
class_type = prompt[node_id]["class_type"] | |
# First, send back the status to the frontend depending | |
# on the exception type | |
if isinstance(ex, comfy.model_management.InterruptProcessingException): | |
mes = { | |
"prompt_id": prompt_id, | |
"node_id": node_id, | |
"node_type": class_type, | |
"executed": list(executed), | |
} | |
self.add_message("execution_interrupted", mes, broadcast=True) | |
else: | |
mes = { | |
"prompt_id": prompt_id, | |
"node_id": node_id, | |
"node_type": class_type, | |
"executed": list(executed), | |
"exception_message": error["exception_message"], | |
"exception_type": error["exception_type"], | |
"traceback": error["traceback"], | |
"current_inputs": error["current_inputs"], | |
"current_outputs": error["current_outputs"], | |
} | |
self.add_message("execution_error", mes, broadcast=False) | |
# Next, remove the subsequent outputs since they will not be executed | |
to_delete = [] | |
for o in self.outputs: | |
if (o not in current_outputs) and (o not in executed): | |
to_delete += [o] | |
if o in self.old_prompt: | |
d = self.old_prompt.pop(o) | |
del d | |
for o in to_delete: | |
d = self.outputs.pop(o) | |
del d | |
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): | |
nodes.interrupt_processing(False) | |
if "client_id" in extra_data: | |
self.server.client_id = extra_data["client_id"] | |
else: | |
self.server.client_id = None | |
self.status_messages = [] | |
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False) | |
with torch.inference_mode(): | |
#delete cached outputs if nodes don't exist for them | |
to_delete = [] | |
for o in self.outputs: | |
if o not in prompt: | |
to_delete += [o] | |
for o in to_delete: | |
d = self.outputs.pop(o) | |
del d | |
to_delete = [] | |
for o in self.object_storage: | |
if o[0] not in prompt: | |
to_delete += [o] | |
else: | |
p = prompt[o[0]] | |
if o[1] != p['class_type']: | |
to_delete += [o] | |
for o in to_delete: | |
d = self.object_storage.pop(o) | |
del d | |
for x in prompt: | |
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x) | |
current_outputs = set(self.outputs.keys()) | |
for x in list(self.outputs_ui.keys()): | |
if x not in current_outputs: | |
d = self.outputs_ui.pop(x) | |
del d | |
comfy.model_management.cleanup_models(keep_clone_weights_loaded=True) | |
self.add_message("execution_cached", | |
{ "nodes": list(current_outputs) , "prompt_id": prompt_id}, | |
broadcast=False) | |
executed = set() | |
output_node_id = None | |
to_execute = [] | |
for node_id in list(execute_outputs): | |
to_execute += [(0, node_id)] | |
while len(to_execute) > 0: | |
#always execute the output that depends on the least amount of unexecuted nodes first | |
memo = {} | |
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1], memo)), a[-1]), to_execute))) | |
output_node_id = to_execute.pop(0)[-1] | |
# This call shouldn't raise anything if there's an error deep in | |
# the actual SD code, instead it will report the node where the | |
# error was raised | |
self.success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui, self.object_storage) | |
if self.success is not True: | |
self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex) | |
break | |
else: | |
# Only execute when the while-loop ends without break | |
self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False) | |
for x in executed: | |
self.old_prompt[x] = copy.deepcopy(prompt[x]) | |
self.server.last_node_id = None | |
if comfy.model_management.DISABLE_SMART_MEMORY: | |
comfy.model_management.unload_all_models() | |
def validate_inputs(prompt, item, validated): | |
unique_id = item | |
if unique_id in validated: | |
return validated[unique_id] | |
inputs = prompt[unique_id]['inputs'] | |
class_type = prompt[unique_id]['class_type'] | |
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] | |
class_inputs = obj_class.INPUT_TYPES() | |
required_inputs = class_inputs['required'] | |
errors = [] | |
valid = True | |
validate_function_inputs = [] | |
if hasattr(obj_class, "VALIDATE_INPUTS"): | |
validate_function_inputs = inspect.getfullargspec(obj_class.VALIDATE_INPUTS).args | |
for x in required_inputs: | |
if x not in inputs: | |
error = { | |
"type": "required_input_missing", | |
"message": "Required input is missing", | |
"details": f"{x}", | |
"extra_info": { | |
"input_name": x | |
} | |
} | |
errors.append(error) | |
continue | |
val = inputs[x] | |
info = required_inputs[x] | |
type_input = info[0] | |
if isinstance(val, list): | |
if len(val) != 2: | |
error = { | |
"type": "bad_linked_input", | |
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]", | |
"details": f"{x}", | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_value": val | |
} | |
} | |
errors.append(error) | |
continue | |
o_id = val[0] | |
o_class_type = prompt[o_id]['class_type'] | |
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES | |
if r[val[1]] != type_input: | |
received_type = r[val[1]] | |
details = f"{x}, {received_type} != {type_input}" | |
error = { | |
"type": "return_type_mismatch", | |
"message": "Return type mismatch between linked nodes", | |
"details": details, | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_type": received_type, | |
"linked_node": val | |
} | |
} | |
errors.append(error) | |
continue | |
try: | |
r = validate_inputs(prompt, o_id, validated) | |
if r[0] is False: | |
# `r` will be set in `validated[o_id]` already | |
valid = False | |
continue | |
except Exception as ex: | |
typ, _, tb = sys.exc_info() | |
valid = False | |
exception_type = full_type_name(typ) | |
reasons = [{ | |
"type": "exception_during_inner_validation", | |
"message": "Exception when validating inner node", | |
"details": str(ex), | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"exception_message": str(ex), | |
"exception_type": exception_type, | |
"traceback": traceback.format_tb(tb), | |
"linked_node": val | |
} | |
}] | |
validated[o_id] = (False, reasons, o_id) | |
continue | |
else: | |
try: | |
if type_input == "INT": | |
val = int(val) | |
inputs[x] = val | |
if type_input == "FLOAT": | |
val = float(val) | |
inputs[x] = val | |
if type_input == "STRING": | |
val = str(val) | |
inputs[x] = val | |
except Exception as ex: | |
error = { | |
"type": "invalid_input_type", | |
"message": f"Failed to convert an input value to a {type_input} value", | |
"details": f"{x}, {val}, {ex}", | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_value": val, | |
"exception_message": str(ex) | |
} | |
} | |
errors.append(error) | |
continue | |
if len(info) > 1: | |
if "min" in info[1] and val < info[1]["min"]: | |
error = { | |
"type": "value_smaller_than_min", | |
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]), | |
"details": f"{x}", | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_value": val, | |
} | |
} | |
errors.append(error) | |
continue | |
if "max" in info[1] and val > info[1]["max"]: | |
error = { | |
"type": "value_bigger_than_max", | |
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]), | |
"details": f"{x}", | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_value": val, | |
} | |
} | |
errors.append(error) | |
continue | |
if x not in validate_function_inputs: | |
if isinstance(type_input, list): | |
if val not in type_input: | |
input_config = info | |
list_info = "" | |
# Don't send back gigantic lists like if they're lots of | |
# scanned model filepaths | |
if len(type_input) > 20: | |
list_info = f"(list of length {len(type_input)})" | |
input_config = None | |
else: | |
list_info = str(type_input) | |
error = { | |
"type": "value_not_in_list", | |
"message": "Value not in list", | |
"details": f"{x}: '{val}' not in {list_info}", | |
"extra_info": { | |
"input_name": x, | |
"input_config": input_config, | |
"received_value": val, | |
} | |
} | |
errors.append(error) | |
continue | |
if len(validate_function_inputs) > 0: | |
input_data_all = get_input_data(inputs, obj_class, unique_id) | |
input_filtered = {} | |
for x in input_data_all: | |
if x in validate_function_inputs: | |
input_filtered[x] = input_data_all[x] | |
#ret = obj_class.VALIDATE_INPUTS(**input_filtered) | |
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS") | |
for x in input_filtered: | |
for i, r in enumerate(ret): | |
if r is not True: | |
details = f"{x}" | |
if r is not False: | |
details += f" - {str(r)}" | |
error = { | |
"type": "custom_validation_failed", | |
"message": "Custom validation failed for node", | |
"details": details, | |
"extra_info": { | |
"input_name": x, | |
"input_config": info, | |
"received_value": val, | |
} | |
} | |
errors.append(error) | |
continue | |
if len(errors) > 0 or valid is not True: | |
ret = (False, errors, unique_id) | |
else: | |
ret = (True, [], unique_id) | |
validated[unique_id] = ret | |
return ret | |
def full_type_name(klass): | |
module = klass.__module__ | |
if module == 'builtins': | |
return klass.__qualname__ | |
return module + '.' + klass.__qualname__ | |
def validate_prompt(prompt): | |
outputs = set() | |
for x in prompt: | |
if 'class_type' not in prompt[x]: | |
error = { | |
"type": "invalid_prompt", | |
"message": f"Cannot execute because a node is missing the class_type property.", | |
"details": f"Node ID '#{x}'", | |
"extra_info": {} | |
} | |
return (False, error, [], []) | |
class_type = prompt[x]['class_type'] | |
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None) | |
if class_ is None: | |
error = { | |
"type": "invalid_prompt", | |
"message": f"Cannot execute because node {class_type} does not exist.", | |
"details": f"Node ID '#{x}'", | |
"extra_info": {} | |
} | |
return (False, error, [], []) | |
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True: | |
outputs.add(x) | |
if len(outputs) == 0: | |
error = { | |
"type": "prompt_no_outputs", | |
"message": "Prompt has no outputs", | |
"details": "", | |
"extra_info": {} | |
} | |
return (False, error, [], []) | |
good_outputs = set() | |
errors = [] | |
node_errors = {} | |
validated = {} | |
for o in outputs: | |
valid = False | |
reasons = [] | |
try: | |
m = validate_inputs(prompt, o, validated) | |
valid = m[0] | |
reasons = m[1] | |
except Exception as ex: | |
typ, _, tb = sys.exc_info() | |
valid = False | |
exception_type = full_type_name(typ) | |
reasons = [{ | |
"type": "exception_during_validation", | |
"message": "Exception when validating node", | |
"details": str(ex), | |
"extra_info": { | |
"exception_type": exception_type, | |
"traceback": traceback.format_tb(tb) | |
} | |
}] | |
validated[o] = (False, reasons, o) | |
if valid is True: | |
good_outputs.add(o) | |
else: | |
logging.error(f"Failed to validate prompt for output {o}:") | |
if len(reasons) > 0: | |
logging.error("* (prompt):") | |
for reason in reasons: | |
logging.error(f" - {reason['message']}: {reason['details']}") | |
errors += [(o, reasons)] | |
for node_id, result in validated.items(): | |
valid = result[0] | |
reasons = result[1] | |
# If a node upstream has errors, the nodes downstream will also | |
# be reported as invalid, but there will be no errors attached. | |
# So don't return those nodes as having errors in the response. | |
if valid is not True and len(reasons) > 0: | |
if node_id not in node_errors: | |
class_type = prompt[node_id]['class_type'] | |
node_errors[node_id] = { | |
"errors": reasons, | |
"dependent_outputs": [], | |
"class_type": class_type | |
} | |
logging.error(f"* {class_type} {node_id}:") | |
for reason in reasons: | |
logging.error(f" - {reason['message']}: {reason['details']}") | |
node_errors[node_id]["dependent_outputs"].append(o) | |
logging.error("Output will be ignored") | |
if len(good_outputs) == 0: | |
errors_list = [] | |
for o, errors in errors: | |
for error in errors: | |
errors_list.append(f"{error['message']}: {error['details']}") | |
errors_list = "\n".join(errors_list) | |
error = { | |
"type": "prompt_outputs_failed_validation", | |
"message": "Prompt outputs failed validation", | |
"details": errors_list, | |
"extra_info": {} | |
} | |
return (False, error, list(good_outputs), node_errors) | |
return (True, None, list(good_outputs), node_errors) | |
MAXIMUM_HISTORY_SIZE = 10000 | |
class PromptQueue: | |
def __init__(self, server): | |
self.server = server | |
self.mutex = threading.RLock() | |
self.not_empty = threading.Condition(self.mutex) | |
self.task_counter = 0 | |
self.queue = [] | |
self.currently_running = {} | |
self.history = {} | |
self.flags = {} | |
server.prompt_queue = self | |
def put(self, item): | |
with self.mutex: | |
heapq.heappush(self.queue, item) | |
self.server.queue_updated() | |
self.not_empty.notify() | |
def get(self, timeout=None): | |
with self.not_empty: | |
while len(self.queue) == 0: | |
self.not_empty.wait(timeout=timeout) | |
if timeout is not None and len(self.queue) == 0: | |
return None | |
item = heapq.heappop(self.queue) | |
i = self.task_counter | |
self.currently_running[i] = copy.deepcopy(item) | |
self.task_counter += 1 | |
self.server.queue_updated() | |
return (item, i) | |
class ExecutionStatus(NamedTuple): | |
status_str: Literal['success', 'error'] | |
completed: bool | |
messages: List[str] | |
def task_done(self, item_id, outputs, | |
status: Optional['PromptQueue.ExecutionStatus']): | |
with self.mutex: | |
prompt = self.currently_running.pop(item_id) | |
if len(self.history) > MAXIMUM_HISTORY_SIZE: | |
self.history.pop(next(iter(self.history))) | |
status_dict: Optional[dict] = None | |
if status is not None: | |
status_dict = copy.deepcopy(status._asdict()) | |
self.history[prompt[1]] = { | |
"prompt": prompt, | |
"outputs": copy.deepcopy(outputs), | |
'status': status_dict, | |
} | |
self.server.queue_updated() | |
def get_current_queue(self): | |
with self.mutex: | |
out = [] | |
for x in self.currently_running.values(): | |
out += [x] | |
return (out, copy.deepcopy(self.queue)) | |
def get_tasks_remaining(self): | |
with self.mutex: | |
return len(self.queue) + len(self.currently_running) | |
def wipe_queue(self): | |
with self.mutex: | |
self.queue = [] | |
self.server.queue_updated() | |
def delete_queue_item(self, function): | |
with self.mutex: | |
for x in range(len(self.queue)): | |
if function(self.queue[x]): | |
if len(self.queue) == 1: | |
self.wipe_queue() | |
else: | |
self.queue.pop(x) | |
heapq.heapify(self.queue) | |
self.server.queue_updated() | |
return True | |
return False | |
def get_history(self, prompt_id=None, max_items=None, offset=-1): | |
with self.mutex: | |
if prompt_id is None: | |
out = {} | |
i = 0 | |
if offset < 0 and max_items is not None: | |
offset = len(self.history) - max_items | |
for k in self.history: | |
if i >= offset: | |
out[k] = self.history[k] | |
if max_items is not None and len(out) >= max_items: | |
break | |
i += 1 | |
return out | |
elif prompt_id in self.history: | |
return {prompt_id: copy.deepcopy(self.history[prompt_id])} | |
else: | |
return {} | |
def wipe_history(self): | |
with self.mutex: | |
self.history = {} | |
def delete_history_item(self, id_to_delete): | |
with self.mutex: | |
self.history.pop(id_to_delete, None) | |
def set_flag(self, name, data): | |
with self.mutex: | |
self.flags[name] = data | |
self.not_empty.notify() | |
def get_flags(self, reset=True): | |
with self.mutex: | |
if reset: | |
ret = self.flags | |
self.flags = {} | |
return ret | |
else: | |
return self.flags.copy() | |