Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import Tensor | |
import comfy.utils | |
import comfy.model_patcher | |
import comfy.model_management | |
from nodes import ImageScale | |
from comfy.model_base import BaseModel | |
from comfy.model_patcher import ModelPatcher | |
from comfy.controlnet import ControlNet, T2IAdapter | |
from typing import List, Union, Tuple, Dict | |
from weakref import WeakSet | |
opt_C = 4 | |
opt_f = 8 | |
def ceildiv(big, small): | |
# Correct ceiling division that avoids floating-point errors and importing math.ceil. | |
return -(big // -small) | |
from enum import Enum | |
class BlendMode(Enum): # i.e. LayerType | |
FOREGROUND = 'Foreground' | |
BACKGROUND = 'Background' | |
class Processing: ... | |
class Device: ... | |
devices = Device() | |
devices.device = comfy.model_management.get_torch_device() | |
def null_decorator(fn): | |
def wrapper(*args, **kwargs): | |
return fn(*args, **kwargs) | |
return wrapper | |
keep_signature = null_decorator | |
controlnet = null_decorator | |
stablesr = null_decorator | |
grid_bbox = null_decorator | |
custom_bbox = null_decorator | |
noise_inverse = null_decorator | |
class BBox: | |
''' grid bbox ''' | |
def __init__(self, x:int, y:int, w:int, h:int): | |
self.x = x | |
self.y = y | |
self.w = w | |
self.h = h | |
self.box = [x, y, x+w, y+h] | |
self.slicer = slice(None), slice(None), slice(y, y+h), slice(x, x+w) | |
def __getitem__(self, idx:int) -> int: | |
return self.box[idx] | |
def split_bboxes(w:int, h:int, tile_w:int, tile_h:int, overlap:int=16, init_weight:Union[Tensor, float]=1.0) -> Tuple[List[BBox], Tensor]: | |
cols = ceildiv((w - overlap) , (tile_w - overlap)) | |
rows = ceildiv((h - overlap) , (tile_h - overlap)) | |
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 | |
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 | |
bbox_list: List[BBox] = [] | |
weight = torch.zeros((1, 1, h, w), device=devices.device, dtype=torch.float32) | |
for row in range(rows): | |
y = min(int(row * dy), h - tile_h) | |
for col in range(cols): | |
x = min(int(col * dx), w - tile_w) | |
bbox = BBox(x, y, tile_w, tile_h) | |
bbox_list.append(bbox) | |
weight[bbox.slicer] += init_weight | |
return bbox_list, weight | |
class CustomBBox(BBox): | |
''' region control bbox ''' | |
pass | |
class AbstractDiffusion: | |
def __init__(self): | |
self.method = self.__class__.__name__ | |
self.pbar = None | |
self.w: int = 0 | |
self.h: int = 0 | |
self.tile_width: int = None | |
self.tile_height: int = None | |
self.tile_overlap: int = None | |
self.tile_batch_size: int = None | |
# cache. final result of current sampling step, [B, C=4, H//8, W//8] | |
# avoiding overhead of creating new tensors and weight summing | |
self.x_buffer: Tensor = None | |
# self.w: int = int(self.p.width // opt_f) # latent size | |
# self.h: int = int(self.p.height // opt_f) | |
# weights for background & grid bboxes | |
self._weights: Tensor = None | |
# self.weights: Tensor = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32) | |
self._init_grid_bbox = None | |
self._init_done = None | |
# count the step correctly | |
self.step_count = 0 | |
self.inner_loop_count = 0 | |
self.kdiff_step = -1 | |
# ext. Grid tiling painting (grid bbox) | |
self.enable_grid_bbox: bool = False | |
self.tile_w: int = None | |
self.tile_h: int = None | |
self.tile_bs: int = None | |
self.num_tiles: int = None | |
self.num_batches: int = None | |
self.batched_bboxes: List[List[BBox]] = [] | |
# ext. Region Prompt Control (custom bbox) | |
self.enable_custom_bbox: bool = False | |
self.custom_bboxes: List[CustomBBox] = [] | |
# self.cond_basis: Cond = None | |
# self.uncond_basis: Uncond = None | |
# self.draw_background: bool = True # by default we draw major prompts in grid tiles | |
# self.causal_layers: bool = None | |
# ext. ControlNet | |
self.enable_controlnet: bool = False | |
# self.controlnet_script: ModuleType = None | |
self.control_tensor_batch_dict = {} | |
self.control_tensor_batch: List[List[Tensor]] = [[]] | |
# self.control_params: Dict[str, Tensor] = None # {} | |
self.control_params: Dict[Tuple, List[List[Tensor]]] = {} | |
self.control_tensor_cpu: bool = None | |
self.control_tensor_custom: List[List[Tensor]] = [] | |
self.draw_background: bool = True # by default we draw major prompts in grid tiles | |
self.control_tensor_cpu = False | |
self.weights = None | |
self.imagescale = ImageScale() | |
def reset(self): | |
tile_width = self.tile_width | |
tile_height = self.tile_height | |
tile_overlap = self.tile_overlap | |
tile_batch_size = self.tile_batch_size | |
self.__init__() | |
self.tile_width = tile_width | |
self.tile_height = tile_height | |
self.tile_overlap = tile_overlap | |
self.tile_batch_size = tile_batch_size | |
def repeat_tensor(self, x:Tensor, n:int, concat=False, concat_to=0) -> Tensor: | |
''' repeat the tensor on it's first dim ''' | |
if n == 1: return x | |
B = x.shape[0] | |
r_dims = len(x.shape) - 1 | |
if B == 1: # batch_size = 1 (not `tile_batch_size`) | |
shape = [n] + [-1] * r_dims # [N, -1, ...] | |
return x.expand(shape) # `expand` is much lighter than `tile` | |
else: | |
if concat: | |
return torch.cat([x for _ in range(n)], dim=0)[:concat_to] | |
shape = [n] + [1] * r_dims # [N, 1, ...] | |
return x.repeat(shape) | |
def update_pbar(self): | |
if self.pbar.n >= self.pbar.total: | |
self.pbar.close() | |
else: | |
# self.pbar.update() | |
sampling_step = 20 | |
if self.step_count == sampling_step: | |
self.inner_loop_count += 1 | |
if self.inner_loop_count < self.total_bboxes: | |
self.pbar.update() | |
else: | |
self.step_count = sampling_step | |
self.inner_loop_count = 0 | |
def reset_buffer(self, x_in:Tensor): | |
# Judge if the shape of x_in is the same as the shape of x_buffer | |
if self.x_buffer is None or self.x_buffer.shape != x_in.shape: | |
self.x_buffer = torch.zeros_like(x_in, device=x_in.device, dtype=x_in.dtype) | |
else: | |
self.x_buffer.zero_() | |
def init_grid_bbox(self, tile_w:int, tile_h:int, overlap:int, tile_bs:int): | |
# if self._init_grid_bbox is not None: return | |
# self._init_grid_bbox = True | |
self.weights = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32) | |
self.enable_grid_bbox = True | |
self.tile_w = min(tile_w, self.w) | |
self.tile_h = min(tile_h, self.h) | |
overlap = max(0, min(overlap, min(tile_w, tile_h) - 4)) | |
# split the latent into overlapped tiles, then batching | |
# weights basically indicate how many times a pixel is painted | |
bboxes, weights = split_bboxes(self.w, self.h, self.tile_w, self.tile_h, overlap, self.get_tile_weights()) | |
self.weights += weights | |
self.num_tiles = len(bboxes) | |
self.num_batches = ceildiv(self.num_tiles , tile_bs) | |
self.tile_bs = ceildiv(len(bboxes) , self.num_batches) # optimal_batch_size | |
self.batched_bboxes = [bboxes[i*self.tile_bs:(i+1)*self.tile_bs] for i in range(self.num_batches)] | |
def get_tile_weights(self) -> Union[Tensor, float]: | |
return 1.0 | |
def init_noise_inverse(self, steps:int, retouch:float, get_cache_callback, set_cache_callback, renoise_strength:float, renoise_kernel:int): | |
self.noise_inverse_enabled = True | |
self.noise_inverse_steps = steps | |
self.noise_inverse_retouch = float(retouch) | |
self.noise_inverse_renoise_strength = float(renoise_strength) | |
self.noise_inverse_renoise_kernel = int(renoise_kernel) | |
self.noise_inverse_set_cache = set_cache_callback | |
self.noise_inverse_get_cache = get_cache_callback | |
def init_done(self): | |
''' | |
Call this after all `init_*`, settings are done, now perform: | |
- settings sanity check | |
- pre-computations, cache init | |
- anything thing needed before denoising starts | |
''' | |
# if self._init_done is not None: return | |
# self._init_done = True | |
self.total_bboxes = 0 | |
if self.enable_grid_bbox: self.total_bboxes += self.num_batches | |
if self.enable_custom_bbox: self.total_bboxes += len(self.custom_bboxes) | |
assert self.total_bboxes > 0, "Nothing to paint! No background to draw and no custom bboxes were provided." | |
# sampling_steps = _steps | |
# self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ") | |
def prepare_controlnet_tensors(self, refresh:bool=False, tensor=None): | |
''' Crop the control tensor into tiles and cache them ''' | |
if not refresh: | |
if self.control_tensor_batch is not None or self.control_params is not None: return | |
tensors = [tensor] | |
self.org_control_tensor_batch = tensors | |
self.control_tensor_batch = [] | |
for i in range(len(tensors)): | |
control_tile_list = [] | |
control_tensor = tensors[i] | |
for bboxes in self.batched_bboxes: | |
single_batch_tensors = [] | |
for bbox in bboxes: | |
if len(control_tensor.shape) == 3: | |
control_tensor.unsqueeze_(0) | |
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] | |
single_batch_tensors.append(control_tile) | |
control_tile = torch.cat(single_batch_tensors, dim=0) | |
if self.control_tensor_cpu: | |
control_tile = control_tile.cpu() | |
control_tile_list.append(control_tile) | |
self.control_tensor_batch.append(control_tile_list) | |
if len(self.custom_bboxes) > 0: | |
custom_control_tile_list = [] | |
for bbox in self.custom_bboxes: | |
if len(control_tensor.shape) == 3: | |
control_tensor.unsqueeze_(0) | |
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] | |
if self.control_tensor_cpu: | |
control_tile = control_tile.cpu() | |
custom_control_tile_list.append(control_tile) | |
self.control_tensor_custom.append(custom_control_tile_list) | |
def switch_controlnet_tensors(self, batch_id:int, x_batch_size:int, tile_batch_size:int, is_denoise=False): | |
# if not self.enable_controlnet: return | |
if self.control_tensor_batch is None: return | |
# self.control_params = [0] | |
# for param_id in range(len(self.control_params)): | |
for param_id in range(len(self.control_tensor_batch)): | |
# tensor that was concatenated in `prepare_controlnet_tensors` | |
control_tile = self.control_tensor_batch[param_id][batch_id] | |
# broadcast to latent batch size | |
if x_batch_size > 1: # self.is_kdiff: | |
all_control_tile = [] | |
for i in range(tile_batch_size): | |
this_control_tile = [control_tile[i].unsqueeze(0)] * x_batch_size | |
all_control_tile.append(torch.cat(this_control_tile, dim=0)) | |
control_tile = torch.cat(all_control_tile, dim=0) # [:x_tile.shape[0]] | |
self.control_tensor_batch[param_id][batch_id] = control_tile | |
# else: | |
# control_tile = control_tile.repeat([x_batch_size if is_denoise else x_batch_size * 2, 1, 1, 1]) | |
# self.control_params[param_id].hint_cond = control_tile.to(devices.device) | |
def process_controlnet(self, x_shape, x_dtype, c_in: dict, cond_or_uncond: List, bboxes, batch_size: int, batch_id: int): | |
control: ControlNet = c_in['control'] | |
param_id = -1 # current controlnet & previous_controlnets | |
tuple_key = tuple(cond_or_uncond) + tuple(x_shape) | |
while control is not None: | |
param_id += 1 | |
PH, PW = self.h*8, self.w*8 | |
if tuple_key not in self.control_params: | |
self.control_params[tuple_key] = [[None]] | |
while len(self.control_params[tuple_key]) <= param_id: | |
self.control_params[tuple_key].append([None]) | |
while len(self.control_params[tuple_key][param_id]) <= batch_id: | |
self.control_params[tuple_key][param_id].append(None) | |
# Below is taken from comfy.controlnet.py, but we need to additionally tile the cnets. | |
# if statement: eager eval. first time when cond_hint is None. | |
if self.refresh or control.cond_hint is None or not isinstance(self.control_params[tuple_key][param_id][batch_id], Tensor): | |
dtype = getattr(control, 'manual_cast_dtype', None) | |
if dtype is None: dtype = getattr(getattr(control, 'control_model', None), 'dtype', None) | |
if dtype is None: dtype = x_dtype | |
if isinstance(control, T2IAdapter): | |
width, height = control.scale_image_to(PW, PH) | |
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, width, height, 'nearest-exact', "center").float().to(control.device) | |
if control.channels_in == 1 and control.cond_hint.shape[1] > 1: | |
control.cond_hint = torch.mean(control.cond_hint, 1, keepdim=True) | |
elif control.__class__.__name__ == 'ControlLLLiteAdvanced': | |
if control.sub_idxs is not None and control.cond_hint_original.shape[0] >= control.full_latent_length: | |
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original[control.sub_idxs], PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device) | |
else: | |
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]): | |
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device) | |
else: | |
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device) | |
else: | |
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]): | |
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device) | |
else: | |
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', 'center').to(dtype=dtype, device=control.device) | |
# Broadcast then tile | |
# | |
# Below can be in the parent's if clause because self.refresh will trigger on resolution change, e.g. cause of ConditioningSetArea | |
# so that particular case isn't cached atm. | |
cond_hint_pre_tile = control.cond_hint | |
if control.cond_hint.shape[0] < batch_size : | |
cond_hint_pre_tile = self.repeat_tensor(control.cond_hint, ceildiv(batch_size, control.cond_hint.shape[0]))[:batch_size] | |
cns = [cond_hint_pre_tile[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] for bbox in bboxes] | |
control.cond_hint = torch.cat(cns, dim=0) | |
self.control_params[tuple_key][param_id][batch_id]=control.cond_hint | |
else: | |
control.cond_hint = self.control_params[tuple_key][param_id][batch_id] | |
control = control.previous_controlnet | |
import numpy as np | |
from numpy import pi, exp, sqrt | |
def gaussian_weights(tile_w:int, tile_h:int) -> Tensor: | |
''' | |
Copy from the original implementation of Mixture of Diffusers | |
https://github.com/albarji/mixture-of-diffusers/blob/master/mixdiff/tiling.py | |
This generates gaussian weights to smooth the noise of each tile. | |
This is critical for this method to work. | |
''' | |
f = lambda x, midpoint, var=0.01: exp(-(x-midpoint)*(x-midpoint) / (tile_w*tile_w) / (2*var)) / sqrt(2*pi*var) | |
x_probs = [f(x, (tile_w - 1) / 2) for x in range(tile_w)] # -1 because index goes from 0 to latent_width - 1 | |
y_probs = [f(y, tile_h / 2) for y in range(tile_h)] | |
w = np.outer(y_probs, x_probs) | |
return torch.from_numpy(w).to(devices.device, dtype=torch.float32) | |
class CondDict: ... | |
class MultiDiffusion(AbstractDiffusion): | |
def __call__(self, model_function: BaseModel.apply_model, args: dict): | |
x_in: Tensor = args["input"] | |
t_in: Tensor = args["timestep"] | |
c_in: dict = args["c"] | |
cond_or_uncond: List = args["cond_or_uncond"] | |
c_crossattn: Tensor = c_in['c_crossattn'] | |
N, C, H, W = x_in.shape | |
# comfyui can feed in a latent that's a different size cause of SetArea, so we'll refresh in that case. | |
self.refresh = False | |
if self.weights is None or self.h != H or self.w != W: | |
self.h, self.w = H, W | |
self.refresh = True | |
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size) | |
# init everything done, perform sanity check & pre-computations | |
self.init_done() | |
self.h, self.w = H, W | |
# clear buffer canvas | |
self.reset_buffer(x_in) | |
# Background sampling (grid bbox) | |
if self.draw_background: | |
for batch_id, bboxes in enumerate(self.batched_bboxes): | |
if comfy.model_management.processing_interrupted(): | |
# self.pbar.close() | |
return x_in | |
# batching & compute tiles | |
x_tile = torch.cat([x_in[bbox.slicer] for bbox in bboxes], dim=0) # [TB, C, TH, TW] | |
n_rep = len(bboxes) | |
ts_tile = self.repeat_tensor(t_in, n_rep) | |
cond_tile = self.repeat_tensor(c_crossattn, n_rep) | |
c_tile = c_in.copy() | |
c_tile['c_crossattn'] = cond_tile | |
if 'time_context' in c_in: | |
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep) | |
for key in c_tile: | |
if key in ['y', 'c_concat']: | |
icond = c_tile[key] | |
if icond.shape[2:] == (self.h, self.w): | |
c_tile[key] = torch.cat([icond[bbox.slicer] for bbox in bboxes]) | |
else: | |
c_tile[key] = self.repeat_tensor(icond, n_rep) | |
# controlnet tiling | |
# self.switch_controlnet_tensors(batch_id, N, len(bboxes)) | |
if 'control' in c_in: | |
control=c_in['control'] | |
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id) | |
c_tile['control'] = control.get_control_orig(x_tile, ts_tile, c_tile, len(cond_or_uncond)) | |
# stablesr tiling | |
# self.switch_stablesr_tensors(batch_id) | |
x_tile_out = model_function(x_tile, ts_tile, **c_tile) | |
for i, bbox in enumerate(bboxes): | |
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] | |
del x_tile_out, x_tile, ts_tile, c_tile | |
# update progress bar | |
# self.update_pbar() | |
# Averaging background buffer | |
x_out = torch.where(self.weights > 1, self.x_buffer / self.weights, self.x_buffer) | |
return x_out | |
class MixtureOfDiffusers(AbstractDiffusion): | |
""" | |
Mixture-of-Diffusers Implementation | |
https://github.com/albarji/mixture-of-diffusers | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# weights for custom bboxes | |
self.custom_weights: List[Tensor] = [] | |
self.get_weight = gaussian_weights | |
def init_done(self): | |
super().init_done() | |
# The original gaussian weights can be extremely small, so we rescale them for numerical stability | |
self.rescale_factor = 1 / self.weights | |
# Meanwhile, we rescale the custom weights in advance to save time of slicing | |
for bbox_id, bbox in enumerate(self.custom_bboxes): | |
if bbox.blend_mode == BlendMode.BACKGROUND: | |
self.custom_weights[bbox_id] *= self.rescale_factor[bbox.slicer] | |
def get_tile_weights(self) -> Tensor: | |
# weights for grid bboxes | |
# if not hasattr(self, 'tile_weights'): | |
# x_in can change sizes cause of ConditioningSetArea, so we have to recalcualte each time | |
self.tile_weights = self.get_weight(self.tile_w, self.tile_h) | |
return self.tile_weights | |
def __call__(self, model_function: BaseModel.apply_model, args: dict): | |
x_in: Tensor = args["input"] | |
t_in: Tensor = args["timestep"] | |
c_in: dict = args["c"] | |
cond_or_uncond: List= args["cond_or_uncond"] | |
c_crossattn: Tensor = c_in['c_crossattn'] | |
N, C, H, W = x_in.shape | |
self.refresh = False | |
# self.refresh = True | |
if self.weights is None or self.h != H or self.w != W: | |
self.h, self.w = H, W | |
self.refresh = True | |
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size) | |
# init everything done, perform sanity check & pre-computations | |
self.init_done() | |
self.h, self.w = H, W | |
# clear buffer canvas | |
self.reset_buffer(x_in) | |
# self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ") | |
# self.pbar = tqdm(total=len(self.batched_bboxes), desc=f"{self.method} Sampling: ") | |
# Global sampling | |
if self.draw_background: | |
for batch_id, bboxes in enumerate(self.batched_bboxes): # batch_id is the `Latent tile batch size` | |
if comfy.model_management.processing_interrupted(): | |
# self.pbar.close() | |
return x_in | |
# batching | |
x_tile_list = [] | |
t_tile_list = [] | |
icond_map = {} | |
# tcond_tile_list = [] | |
# icond_tile_list = [] | |
# vcond_tile_list = [] | |
# control_list = [] | |
for bbox in bboxes: | |
x_tile_list.append(x_in[bbox.slicer]) | |
t_tile_list.append(t_in) | |
if isinstance(c_in, dict): | |
# tcond | |
# tcond_tile = c_crossattn #self.get_tcond(c_in) # cond, [1, 77, 768] | |
# tcond_tile_list.append(tcond_tile) | |
# present in sdxl | |
for key in ['y', 'c_concat']: | |
if key in c_in: | |
icond=c_in[key] # self.get_icond(c_in) | |
if icond.shape[2:] == (self.h, self.w): | |
icond = icond[bbox.slicer] | |
if icond_map.get(key, None) is None: | |
icond_map[key] = [] | |
icond_map[key].append(icond) | |
# # vcond: | |
# vcond = self.get_vcond(c_in) | |
# vcond_tile_list.append(vcond) | |
else: | |
print('>> [WARN] not supported, make an issue on github!!') | |
n_rep = len(bboxes) | |
x_tile = torch.cat(x_tile_list, dim=0) # differs each | |
t_tile = self.repeat_tensor(t_in, n_rep) # just repeat | |
tcond_tile = self.repeat_tensor(c_crossattn, n_rep) # just repeat | |
c_tile = c_in.copy() | |
c_tile['c_crossattn'] = tcond_tile | |
if 'time_context' in c_in: | |
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep) # just repeat | |
for key in c_tile: | |
if key in ['y', 'c_concat']: | |
icond_tile = torch.cat(icond_map[key], dim=0) # differs each | |
c_tile[key] = icond_tile | |
# vcond_tile = torch.cat(vcond_tile_list, dim=0) if None not in vcond_tile_list else None # just repeat | |
# controlnet | |
# self.switch_controlnet_tensors(batch_id, N, len(bboxes), is_denoise=True) | |
if 'control' in c_in: | |
control=c_in['control'] | |
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id) | |
c_tile['control'] = control.get_control_orig(x_tile, t_tile, c_tile, len(cond_or_uncond)) | |
# stablesr | |
# self.switch_stablesr_tensors(batch_id) | |
# denoising: here the x is the noise | |
x_tile_out = model_function(x_tile, t_tile, **c_tile) | |
# de-batching | |
for i, bbox in enumerate(bboxes): | |
# These weights can be calcluated in advance, but will cost a lot of vram | |
# when you have many tiles. So we calculate it here. | |
w = self.tile_weights * self.rescale_factor[bbox.slicer] | |
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] * w | |
del x_tile_out, x_tile, t_tile, c_tile | |
# self.update_pbar() | |
# self.pbar.update() | |
# self.pbar.close() | |
x_out = self.x_buffer | |
return x_out | |
MAX_RESOLUTION=8192 | |
class TiledDiffusion(): | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL", ), | |
"method": (["MultiDiffusion", "Mixture of Diffusers"], {"default": "Mixture of Diffusers"}), | |
# "tile_width": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}), | |
"tile_width": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}), | |
# "tile_height": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}), | |
"tile_height": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}), | |
"tile_overlap": ("INT", {"default": 8*opt_f, "min": 0, "max": 256*opt_f, "step": 4*opt_f}), | |
"tile_batch_size": ("INT", {"default": 4, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply" | |
CATEGORY = "_for_testing" | |
instances = WeakSet() | |
def IS_CHANGED(s, *args, **kwargs): | |
for o in s.instances: | |
o.impl.reset() | |
return "" | |
def __init__(self) -> None: | |
self.__class__.instances.add(self) | |
def apply(self, model: ModelPatcher, method, tile_width, tile_height, tile_overlap, tile_batch_size): | |
if method == "Mixture of Diffusers": | |
self.impl = MixtureOfDiffusers() | |
else: | |
self.impl = MultiDiffusion() | |
# if noise_inversion: | |
# get_cache_callback = self.noise_inverse_get_cache | |
# set_cache_callback = None # lambda x0, xt, prompts: self.noise_inverse_set_cache(p, x0, xt, prompts, steps, retouch) | |
# self.impl.init_noise_inverse(steps, retouch, get_cache_callback, set_cache_callback, renoise_strength, renoise_kernel_size) | |
self.impl.tile_width = tile_width // opt_f | |
self.impl.tile_height = tile_height // opt_f | |
self.impl.tile_overlap = tile_overlap // opt_f | |
self.impl.tile_batch_size = tile_batch_size | |
# self.impl.init_grid_bbox(tile_width, tile_height, tile_overlap, tile_batch_size) | |
# # init everything done, perform sanity check & pre-computations | |
# self.impl.init_done() | |
# hijack the behaviours | |
# self.impl.hook() | |
model = model.clone() | |
model.set_model_unet_function_wrapper(self.impl) | |
model.model_options['tiled_diffusion'] = True | |
return (model,) | |
class NoiseInversion(): | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL", ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"latent_image": ("LATENT", ), | |
"image": ("IMAGE", ), | |
"steps": ("INT", {"default": 10, "min": 1, "max": 208, "step": 1}), | |
"retouch": ("FLOAT", {"default": 1, "min": 1, "max": 100, "step": 0.1}), | |
"renoise_strength": ("FLOAT", {"default": 1, "min": 1, "max": 2, "step": 0.01}), | |
"renoise_kernel_size": ("INT", {"default": 2, "min": 2, "max": 512, "step": 1}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "sample" | |
CATEGORY = "sampling" | |
def sample(self, model: ModelPatcher, positive, negative, | |
latent_image, image, steps, retouch, renoise_strength, renoise_kernel_size): | |
return (latent_image,) | |
NODE_CLASS_MAPPINGS = { | |
"TiledDiffusion": TiledDiffusion, | |
# "NoiseInversion": NoiseInversion, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"TiledDiffusion": "Tiled Diffusion", | |
# "NoiseInversion": "Noise Inversion", | |
} | |