import folder_paths import os import torch import torch.nn.functional as F from comfy.utils import ProgressBar, load_torch_file import comfy.sample from nodes import CLIPTextEncode script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) folder_paths.add_model_folder_path("intrinsic_loras", os.path.join(script_directory, "intrinsic_loras")) class Intrinsic_lora_sampling: def __init__(self): self.loaded_lora = None @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "lora_name": (folder_paths.get_filename_list("intrinsic_loras"), ), "task": ( [ 'depth map', 'surface normals', 'albedo', 'shading', ], { "default": 'depth map' }), "text": ("STRING", {"multiline": True, "default": ""}), "clip": ("CLIP", ), "vae": ("VAE", ), "per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), }, "optional": { "image": ("IMAGE",), "optional_latent": ("LATENT",), }, } RETURN_TYPES = ("IMAGE", "LATENT",) FUNCTION = "onestepsample" CATEGORY = "KJNodes" DESCRIPTION = """ Sampler to use the intrinsic loras: https://github.com/duxiaodan/intrinsic-lora These LoRAs are tiny and thus included with this node pack. """ def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None): pbar = ProgressBar(3) if optional_latent is None: image_list = [] for start_idx in range(0, image.shape[0], per_batch): sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch]) image_list.append(vae.encode(sub_pixels[:,:,:,:3])) sample = torch.cat(image_list, dim=0) else: sample = optional_latent["samples"] noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu") prompt = task + "," + text positive, = CLIPTextEncode.encode(self, clip, prompt) negative = positive #negative shouldn't do anything in this scenario pbar.update(1) #custom model sampling to pass latent through as it is class X0_PassThrough(comfy.model_sampling.EPS): def calculate_denoised(self, sigma, model_output, model_input): return model_output def calculate_input(self, sigma, noise): return noise sampling_base = comfy.model_sampling.ModelSamplingDiscrete sampling_type = X0_PassThrough class ModelSamplingAdvanced(sampling_base, sampling_type): pass model_sampling = ModelSamplingAdvanced(model.model.model_config) #load lora model_clone = model.clone() lora_path = folder_paths.get_full_path("intrinsic_loras", lora_name) lora = load_torch_file(lora_path, safe_load=True) self.loaded_lora = (lora_path, lora) model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0] model_clone_with_lora.add_object_patch("model_sampling", model_sampling) samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample, denoise=1.0, disable_noise=True, start_step=0, last_step=1, force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)} pbar.update(1) decoded = [] for start_idx in range(0, samples["samples"].shape[0], per_batch): decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch])) image_out = torch.cat(decoded, dim=0) pbar.update(1) if task == 'depth map': imax = image_out.max() imin = image_out.min() image_out = (image_out-imin)/(imax-imin) image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3) elif task == 'surface normals': image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5 image_out = 1.0 - image_out else: image_out = image_out.clamp(-1.,1.) return (image_out, samples,)