import comfy import torch from .libs import utils from einops import rearrange import random import math from .libs import common class Inspire_RandomNoise: def __init__(self, seed, mode, incremental_seed_mode, variation_seed, variation_strength, variation_method="linear"): device = comfy.model_management.get_torch_device() self.seed = seed self.noise_device = "cpu" if mode == "CPU" else device self.incremental_seed_mode = incremental_seed_mode self.variation_seed = variation_seed self.variation_strength = variation_strength self.variation_method = variation_method def generate_noise(self, input_latent): latent_image = input_latent["samples"] batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None noise = utils.prepare_noise(latent_image, self.seed, batch_inds, self.noise_device, self.incremental_seed_mode, variation_seed=self.variation_seed, variation_strength=self.variation_strength, variation_method=self.variation_method) return noise.cpu() class RandomNoise: @classmethod def INPUT_TYPES(s): return {"required": { "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "noise_mode": (["GPU(=A1111)", "CPU"],), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": {"variation_method": (["linear", "slerp"],), } } RETURN_TYPES = ("NOISE",) FUNCTION = "get_noise" CATEGORY = "InspirePack/a1111_compat" def get_noise(self, noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method="linear"): return (Inspire_RandomNoise(noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method=variation_method),) def inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, noise_mode="CPU", disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, noise=None, callback=None, variation_method="linear", scheduler_func=None): device = comfy.model_management.get_torch_device() noise_device = "cpu" if noise_mode == "CPU" else device latent_image = latent["samples"] if hasattr(comfy.sample, 'fix_empty_latent_channels'): latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) latent = latent.copy() if noise is not None and latent_image.shape[1] != noise.shape[1]: print("[Inspire Pack] inspire_ksampler: The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.") raise Exception("The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.") if noise is None: if disable_noise: torch.manual_seed(seed) noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device) else: batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = utils.prepare_noise(latent_image, seed, batch_inds, noise_device, incremental_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method) if start_step is None: if denoise == 1.0: start_step = 0 else: advanced_steps = math.floor(steps / denoise) start_step = advanced_steps - steps steps = advanced_steps try: samples = common.impact_sampling( model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative, latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback, scheduler_func=scheduler_func) except Exception as e: if "unexpected keyword argument 'scheduler_func'" in str(e): print(f"[Inspire Pack] Impact Pack is outdated. (Cannot use GITS scheduler.)") samples = common.impact_sampling( model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative, latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback) else: raise e return samples, noise class KSampler_inspire: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (common.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "noise_mode": (["GPU(=A1111)", "CPU"],), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "variation_method": (["linear", "slerp"],), "scheduler_func_opt": ("SCHEDULER_FUNC",), } } RETURN_TYPES = ("LATENT",) FUNCTION = "doit" CATEGORY = "InspirePack/a1111_compat" @staticmethod def doit(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, variation_method="linear", scheduler_func_opt=None): return (inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method, scheduler_func=scheduler_func_opt)[0], ) class KSamplerAdvanced_inspire: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (common.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), "noise_mode": (["GPU(=A1111)", "CPU"],), "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "variation_method": (["linear", "slerp"],), "noise_opt": ("NOISE",), "scheduler_func_opt": ("SCHEDULER_FUNC",), } } RETURN_TYPES = ("LATENT",) FUNCTION = "doit" CATEGORY = "InspirePack/a1111_compat" @staticmethod def sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise, denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, callback=None, variation_method="linear", scheduler_func_opt=None): force_full_denoise = True if return_with_leftover_noise: force_full_denoise = False disable_noise = False if not add_noise: disable_noise = True return inspire_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt, callback=callback, variation_method=variation_method, scheduler_func=scheduler_func_opt) def doit(self, *args, **kwargs): return (self.sample(*args, **kwargs)[0],) class KSampler_inspire_pipe: @classmethod def INPUT_TYPES(s): return {"required": {"basic_pipe": ("BASIC_PIPE",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (common.SCHEDULERS, ), "latent_image": ("LATENT", ), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "noise_mode": (["GPU(=A1111)", "CPU"],), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "scheduler_func_opt": ("SCHEDULER_FUNC",), } } RETURN_TYPES = ("LATENT", "VAE") FUNCTION = "sample" CATEGORY = "InspirePack/a1111_compat" def sample(self, basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise, noise_mode, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, scheduler_func_opt=None): model, clip, vae, positive, negative = basic_pipe latent = inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, scheduler_func=scheduler_func_opt)[0] return latent, vae class KSamplerAdvanced_inspire_pipe: @classmethod def INPUT_TYPES(s): return {"required": {"basic_pipe": ("BASIC_PIPE",), "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (common.SCHEDULERS, ), "latent_image": ("LATENT", ), "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), "noise_mode": (["GPU(=A1111)", "CPU"],), "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],), "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "noise_opt": ("NOISE",), "scheduler_func_opt": ("SCHEDULER_FUNC",), } } RETURN_TYPES = ("LATENT", "VAE", ) FUNCTION = "sample" CATEGORY = "InspirePack/a1111_compat" def sample(self, basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise, denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, scheduler_func_opt=None): model, clip, vae, positive, negative = basic_pipe latent = KSamplerAdvanced_inspire().sample(model=model, add_noise=add_noise, noise_seed=noise_seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative, latent_image=latent_image, start_at_step=start_at_step, end_at_step=end_at_step, noise_mode=noise_mode, return_with_leftover_noise=return_with_leftover_noise, denoise=denoise, batch_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, noise_opt=noise_opt, scheduler_func_opt=scheduler_func_opt)[0] return latent, vae # Modified version of ComfyUI main code # https://github.com/comfyanonymous/ComfyUI/blob/master/comfy_extras/nodes_hypertile.py def get_closest_divisors(hw: int, aspect_ratio: float) -> tuple[int, int]: pairs = [(i, hw // i) for i in range(int(math.sqrt(hw)), 1, -1) if hw % i == 0] pair = min(((i, hw // i) for i in range(2, hw + 1) if hw % i == 0), key=lambda x: abs(x[1] / x[0] - aspect_ratio)) pairs.append(pair) res = min(pairs, key=lambda x: max(x) / min(x)) return res def calc_optimal_hw(hw: int, aspect_ratio: float) -> tuple[int, int]: hcand = round(math.sqrt(hw * aspect_ratio)) wcand = hw // hcand if hcand * wcand != hw: wcand = round(math.sqrt(hw / aspect_ratio)) hcand = hw // wcand if hcand * wcand != hw: return get_closest_divisors(hw, aspect_ratio) return hcand, wcand def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=random.Random()) -> int: # print(f"value={value}, min_value={min_value}, max_options={max_options}") min_value = min(min_value, value) # All big divisors of value (inclusive) divisors = [i for i in range(min_value, value + 1) if value % i == 0] ns = [value // i for i in divisors[:max_options]] # has at least 1 element if len(ns) - 1 > 0: idx = rand_obj.randint(0, len(ns) - 1) else: idx = 0 # print(f"ns={ns}, idx={idx}") return ns[idx] # def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]: # """ # Returns divisors of value that # x * min_value <= value # in big -> small order, amount of divisors is limited by max_options # """ # max_options = max(1, max_options) # at least 1 option should be returned # min_value = min(min_value, value) # divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order # ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order # return ns # def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=None) -> int: # """ # Returns a random divisor of value that # x * min_value <= value # if max_options is 1, the behavior is deterministic # """ # print(f"value={value}, min_value={min_value}, max_options={max_options}") # ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors # idx = rand_obj.randint(0, len(ns) - 1) # print(f"ns={ns}, idx={idx}") # # return ns[idx] class HyperTileInspire: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}), "swap_size": ("INT", {"default": 2, "min": 1, "max": 128}), "max_depth": ("INT", {"default": 0, "min": 0, "max": 10}), "scale_depth": ("BOOLEAN", {"default": False}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "InspirePack/__for_testing" def patch(self, model, tile_size, swap_size, max_depth, scale_depth, seed): latent_tile_size = max(32, tile_size) // 8 temp = None rand_obj = random.Random() rand_obj.seed(seed) def hypertile_in(q, k, v, extra_options): nonlocal temp model_chans = q.shape[-2] orig_shape = extra_options['original_shape'] apply_to = [] for i in range(max_depth + 1): apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i))) if model_chans in apply_to: shape = extra_options["original_shape"] aspect_ratio = shape[-1] / shape[-2] hw = q.size(1) # h, w = calc_optimal_hw(hw, aspect_ratio) h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1 nh = random_divisor(h, latent_tile_size * factor, swap_size, rand_obj) nw = random_divisor(w, latent_tile_size * factor, swap_size, rand_obj) print(f"factor: {factor} <--- params.depth: {apply_to.index(model_chans)} / scale_depth: {scale_depth} / latent_tile_size={latent_tile_size}") # print(f"h: {h}, w:{w} --> nh: {nh}, nw: {nw}") if nh * nw > 1: q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) temp = (nh, nw, h, w) # else: # temp = None print(f"q={q} / k={k} / v={v}") return q, k, v return q, k, v def hypertile_out(out, extra_options): nonlocal temp if temp is not None: nh, nw, h, w = temp temp = None out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) return out m = model.clone() m.set_model_attn1_patch(hypertile_in) m.set_model_attn1_output_patch(hypertile_out) return (m, ) NODE_CLASS_MAPPINGS = { "KSampler //Inspire": KSampler_inspire, "KSamplerAdvanced //Inspire": KSamplerAdvanced_inspire, "KSamplerPipe //Inspire": KSampler_inspire_pipe, "KSamplerAdvancedPipe //Inspire": KSamplerAdvanced_inspire_pipe, "RandomNoise //Inspire": RandomNoise, "HyperTile //Inspire": HyperTileInspire } NODE_DISPLAY_NAME_MAPPINGS = { "KSampler //Inspire": "KSampler (inspire)", "KSamplerAdvanced //Inspire": "KSamplerAdvanced (inspire)", "KSamplerPipe //Inspire": "KSampler [pipe] (inspire)", "KSamplerAdvancedPipe //Inspire": "KSamplerAdvanced [pipe] (inspire)", "RandomNoise //Inspire": "RandomNoise (inspire)", "HyperTile //Inspire": "HyperTile (Inspire)" }