import torch import numpy as np from PIL import Image from typing import Union, List # Utility functions from mtb nodes: https://github.com/melMass/comfy_mtb def pil2tensor(image: Union[Image.Image, List[Image.Image]]) -> torch.Tensor: if isinstance(image, list): return torch.cat([pil2tensor(img) for img in image], dim=0) return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) def np2tensor(img_np: Union[np.ndarray, List[np.ndarray]]) -> torch.Tensor: if isinstance(img_np, list): return torch.cat([np2tensor(img) for img in img_np], dim=0) return torch.from_numpy(img_np.astype(np.float32) / 255.0).unsqueeze(0) def tensor2np(tensor: torch.Tensor): if len(tensor.shape) == 3: # Single image return np.clip(255.0 * tensor.cpu().numpy(), 0, 255).astype(np.uint8) else: # Batch of images return [np.clip(255.0 * t.cpu().numpy(), 0, 255).astype(np.uint8) for t in tensor] def tensor2pil(image: torch.Tensor) -> List[Image.Image]: batch_count = image.size(0) if len(image.shape) > 3 else 1 if batch_count > 1: out = [] for i in range(batch_count): out.extend(tensor2pil(image[i])) return out return [ Image.fromarray( np.clip(255.0 * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) ) ]