import torch from torch import Tensor import comfy.utils import comfy.model_patcher import comfy.model_management from nodes import ImageScale from comfy.model_base import BaseModel from comfy.model_patcher import ModelPatcher from comfy.controlnet import ControlNet, T2IAdapter from typing import List, Union, Tuple, Dict from weakref import WeakSet opt_C = 4 opt_f = 8 def ceildiv(big, small): # Correct ceiling division that avoids floating-point errors and importing math.ceil. return -(big // -small) from enum import Enum class BlendMode(Enum): # i.e. LayerType FOREGROUND = 'Foreground' BACKGROUND = 'Background' class Processing: ... class Device: ... devices = Device() devices.device = comfy.model_management.get_torch_device() def null_decorator(fn): def wrapper(*args, **kwargs): return fn(*args, **kwargs) return wrapper keep_signature = null_decorator controlnet = null_decorator stablesr = null_decorator grid_bbox = null_decorator custom_bbox = null_decorator noise_inverse = null_decorator class BBox: ''' grid bbox ''' def __init__(self, x:int, y:int, w:int, h:int): self.x = x self.y = y self.w = w self.h = h self.box = [x, y, x+w, y+h] self.slicer = slice(None), slice(None), slice(y, y+h), slice(x, x+w) def __getitem__(self, idx:int) -> int: return self.box[idx] def split_bboxes(w:int, h:int, tile_w:int, tile_h:int, overlap:int=16, init_weight:Union[Tensor, float]=1.0) -> Tuple[List[BBox], Tensor]: cols = ceildiv((w - overlap) , (tile_w - overlap)) rows = ceildiv((h - overlap) , (tile_h - overlap)) dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 bbox_list: List[BBox] = [] weight = torch.zeros((1, 1, h, w), device=devices.device, dtype=torch.float32) for row in range(rows): y = min(int(row * dy), h - tile_h) for col in range(cols): x = min(int(col * dx), w - tile_w) bbox = BBox(x, y, tile_w, tile_h) bbox_list.append(bbox) weight[bbox.slicer] += init_weight return bbox_list, weight class CustomBBox(BBox): ''' region control bbox ''' pass class AbstractDiffusion: def __init__(self): self.method = self.__class__.__name__ self.pbar = None self.w: int = 0 self.h: int = 0 self.tile_width: int = None self.tile_height: int = None self.tile_overlap: int = None self.tile_batch_size: int = None # cache. final result of current sampling step, [B, C=4, H//8, W//8] # avoiding overhead of creating new tensors and weight summing self.x_buffer: Tensor = None # self.w: int = int(self.p.width // opt_f) # latent size # self.h: int = int(self.p.height // opt_f) # weights for background & grid bboxes self._weights: Tensor = None # self.weights: Tensor = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32) self._init_grid_bbox = None self._init_done = None # count the step correctly self.step_count = 0 self.inner_loop_count = 0 self.kdiff_step = -1 # ext. Grid tiling painting (grid bbox) self.enable_grid_bbox: bool = False self.tile_w: int = None self.tile_h: int = None self.tile_bs: int = None self.num_tiles: int = None self.num_batches: int = None self.batched_bboxes: List[List[BBox]] = [] # ext. Region Prompt Control (custom bbox) self.enable_custom_bbox: bool = False self.custom_bboxes: List[CustomBBox] = [] # self.cond_basis: Cond = None # self.uncond_basis: Uncond = None # self.draw_background: bool = True # by default we draw major prompts in grid tiles # self.causal_layers: bool = None # ext. ControlNet self.enable_controlnet: bool = False # self.controlnet_script: ModuleType = None self.control_tensor_batch_dict = {} self.control_tensor_batch: List[List[Tensor]] = [[]] # self.control_params: Dict[str, Tensor] = None # {} self.control_params: Dict[Tuple, List[List[Tensor]]] = {} self.control_tensor_cpu: bool = None self.control_tensor_custom: List[List[Tensor]] = [] self.draw_background: bool = True # by default we draw major prompts in grid tiles self.control_tensor_cpu = False self.weights = None self.imagescale = ImageScale() def reset(self): tile_width = self.tile_width tile_height = self.tile_height tile_overlap = self.tile_overlap tile_batch_size = self.tile_batch_size self.__init__() self.tile_width = tile_width self.tile_height = tile_height self.tile_overlap = tile_overlap self.tile_batch_size = tile_batch_size def repeat_tensor(self, x:Tensor, n:int, concat=False, concat_to=0) -> Tensor: ''' repeat the tensor on it's first dim ''' if n == 1: return x B = x.shape[0] r_dims = len(x.shape) - 1 if B == 1: # batch_size = 1 (not `tile_batch_size`) shape = [n] + [-1] * r_dims # [N, -1, ...] return x.expand(shape) # `expand` is much lighter than `tile` else: if concat: return torch.cat([x for _ in range(n)], dim=0)[:concat_to] shape = [n] + [1] * r_dims # [N, 1, ...] return x.repeat(shape) def update_pbar(self): if self.pbar.n >= self.pbar.total: self.pbar.close() else: # self.pbar.update() sampling_step = 20 if self.step_count == sampling_step: self.inner_loop_count += 1 if self.inner_loop_count < self.total_bboxes: self.pbar.update() else: self.step_count = sampling_step self.inner_loop_count = 0 def reset_buffer(self, x_in:Tensor): # Judge if the shape of x_in is the same as the shape of x_buffer if self.x_buffer is None or self.x_buffer.shape != x_in.shape: self.x_buffer = torch.zeros_like(x_in, device=x_in.device, dtype=x_in.dtype) else: self.x_buffer.zero_() @grid_bbox def init_grid_bbox(self, tile_w:int, tile_h:int, overlap:int, tile_bs:int): # if self._init_grid_bbox is not None: return # self._init_grid_bbox = True self.weights = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32) self.enable_grid_bbox = True self.tile_w = min(tile_w, self.w) self.tile_h = min(tile_h, self.h) overlap = max(0, min(overlap, min(tile_w, tile_h) - 4)) # split the latent into overlapped tiles, then batching # weights basically indicate how many times a pixel is painted bboxes, weights = split_bboxes(self.w, self.h, self.tile_w, self.tile_h, overlap, self.get_tile_weights()) self.weights += weights self.num_tiles = len(bboxes) self.num_batches = ceildiv(self.num_tiles , tile_bs) self.tile_bs = ceildiv(len(bboxes) , self.num_batches) # optimal_batch_size self.batched_bboxes = [bboxes[i*self.tile_bs:(i+1)*self.tile_bs] for i in range(self.num_batches)] @grid_bbox def get_tile_weights(self) -> Union[Tensor, float]: return 1.0 @noise_inverse def init_noise_inverse(self, steps:int, retouch:float, get_cache_callback, set_cache_callback, renoise_strength:float, renoise_kernel:int): self.noise_inverse_enabled = True self.noise_inverse_steps = steps self.noise_inverse_retouch = float(retouch) self.noise_inverse_renoise_strength = float(renoise_strength) self.noise_inverse_renoise_kernel = int(renoise_kernel) self.noise_inverse_set_cache = set_cache_callback self.noise_inverse_get_cache = get_cache_callback def init_done(self): ''' Call this after all `init_*`, settings are done, now perform: - settings sanity check - pre-computations, cache init - anything thing needed before denoising starts ''' # if self._init_done is not None: return # self._init_done = True self.total_bboxes = 0 if self.enable_grid_bbox: self.total_bboxes += self.num_batches if self.enable_custom_bbox: self.total_bboxes += len(self.custom_bboxes) assert self.total_bboxes > 0, "Nothing to paint! No background to draw and no custom bboxes were provided." # sampling_steps = _steps # self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ") @controlnet def prepare_controlnet_tensors(self, refresh:bool=False, tensor=None): ''' Crop the control tensor into tiles and cache them ''' if not refresh: if self.control_tensor_batch is not None or self.control_params is not None: return tensors = [tensor] self.org_control_tensor_batch = tensors self.control_tensor_batch = [] for i in range(len(tensors)): control_tile_list = [] control_tensor = tensors[i] for bboxes in self.batched_bboxes: single_batch_tensors = [] for bbox in bboxes: if len(control_tensor.shape) == 3: control_tensor.unsqueeze_(0) control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] single_batch_tensors.append(control_tile) control_tile = torch.cat(single_batch_tensors, dim=0) if self.control_tensor_cpu: control_tile = control_tile.cpu() control_tile_list.append(control_tile) self.control_tensor_batch.append(control_tile_list) if len(self.custom_bboxes) > 0: custom_control_tile_list = [] for bbox in self.custom_bboxes: if len(control_tensor.shape) == 3: control_tensor.unsqueeze_(0) control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] if self.control_tensor_cpu: control_tile = control_tile.cpu() custom_control_tile_list.append(control_tile) self.control_tensor_custom.append(custom_control_tile_list) @controlnet def switch_controlnet_tensors(self, batch_id:int, x_batch_size:int, tile_batch_size:int, is_denoise=False): # if not self.enable_controlnet: return if self.control_tensor_batch is None: return # self.control_params = [0] # for param_id in range(len(self.control_params)): for param_id in range(len(self.control_tensor_batch)): # tensor that was concatenated in `prepare_controlnet_tensors` control_tile = self.control_tensor_batch[param_id][batch_id] # broadcast to latent batch size if x_batch_size > 1: # self.is_kdiff: all_control_tile = [] for i in range(tile_batch_size): this_control_tile = [control_tile[i].unsqueeze(0)] * x_batch_size all_control_tile.append(torch.cat(this_control_tile, dim=0)) control_tile = torch.cat(all_control_tile, dim=0) # [:x_tile.shape[0]] self.control_tensor_batch[param_id][batch_id] = control_tile # else: # control_tile = control_tile.repeat([x_batch_size if is_denoise else x_batch_size * 2, 1, 1, 1]) # self.control_params[param_id].hint_cond = control_tile.to(devices.device) def process_controlnet(self, x_shape, x_dtype, c_in: dict, cond_or_uncond: List, bboxes, batch_size: int, batch_id: int): control: ControlNet = c_in['control'] param_id = -1 # current controlnet & previous_controlnets tuple_key = tuple(cond_or_uncond) + tuple(x_shape) while control is not None: param_id += 1 PH, PW = self.h*8, self.w*8 if tuple_key not in self.control_params: self.control_params[tuple_key] = [[None]] while len(self.control_params[tuple_key]) <= param_id: self.control_params[tuple_key].append([None]) while len(self.control_params[tuple_key][param_id]) <= batch_id: self.control_params[tuple_key][param_id].append(None) # Below is taken from comfy.controlnet.py, but we need to additionally tile the cnets. # if statement: eager eval. first time when cond_hint is None. if self.refresh or control.cond_hint is None or not isinstance(self.control_params[tuple_key][param_id][batch_id], Tensor): dtype = getattr(control, 'manual_cast_dtype', None) if dtype is None: dtype = getattr(getattr(control, 'control_model', None), 'dtype', None) if dtype is None: dtype = x_dtype if isinstance(control, T2IAdapter): width, height = control.scale_image_to(PW, PH) control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, width, height, 'nearest-exact', "center").float().to(control.device) if control.channels_in == 1 and control.cond_hint.shape[1] > 1: control.cond_hint = torch.mean(control.cond_hint, 1, keepdim=True) elif control.__class__.__name__ == 'ControlLLLiteAdvanced': if control.sub_idxs is not None and control.cond_hint_original.shape[0] >= control.full_latent_length: control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original[control.sub_idxs], PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device) else: if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]): control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device) else: control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device) else: if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]): control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device) else: control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', 'center').to(dtype=dtype, device=control.device) # Broadcast then tile # # Below can be in the parent's if clause because self.refresh will trigger on resolution change, e.g. cause of ConditioningSetArea # so that particular case isn't cached atm. cond_hint_pre_tile = control.cond_hint if control.cond_hint.shape[0] < batch_size : cond_hint_pre_tile = self.repeat_tensor(control.cond_hint, ceildiv(batch_size, control.cond_hint.shape[0]))[:batch_size] cns = [cond_hint_pre_tile[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] for bbox in bboxes] control.cond_hint = torch.cat(cns, dim=0) self.control_params[tuple_key][param_id][batch_id]=control.cond_hint else: control.cond_hint = self.control_params[tuple_key][param_id][batch_id] control = control.previous_controlnet import numpy as np from numpy import pi, exp, sqrt def gaussian_weights(tile_w:int, tile_h:int) -> Tensor: ''' Copy from the original implementation of Mixture of Diffusers https://github.com/albarji/mixture-of-diffusers/blob/master/mixdiff/tiling.py This generates gaussian weights to smooth the noise of each tile. This is critical for this method to work. ''' f = lambda x, midpoint, var=0.01: exp(-(x-midpoint)*(x-midpoint) / (tile_w*tile_w) / (2*var)) / sqrt(2*pi*var) x_probs = [f(x, (tile_w - 1) / 2) for x in range(tile_w)] # -1 because index goes from 0 to latent_width - 1 y_probs = [f(y, tile_h / 2) for y in range(tile_h)] w = np.outer(y_probs, x_probs) return torch.from_numpy(w).to(devices.device, dtype=torch.float32) class CondDict: ... class MultiDiffusion(AbstractDiffusion): @torch.inference_mode() def __call__(self, model_function: BaseModel.apply_model, args: dict): x_in: Tensor = args["input"] t_in: Tensor = args["timestep"] c_in: dict = args["c"] cond_or_uncond: List = args["cond_or_uncond"] c_crossattn: Tensor = c_in['c_crossattn'] N, C, H, W = x_in.shape # comfyui can feed in a latent that's a different size cause of SetArea, so we'll refresh in that case. self.refresh = False if self.weights is None or self.h != H or self.w != W: self.h, self.w = H, W self.refresh = True self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size) # init everything done, perform sanity check & pre-computations self.init_done() self.h, self.w = H, W # clear buffer canvas self.reset_buffer(x_in) # Background sampling (grid bbox) if self.draw_background: for batch_id, bboxes in enumerate(self.batched_bboxes): if comfy.model_management.processing_interrupted(): # self.pbar.close() return x_in # batching & compute tiles x_tile = torch.cat([x_in[bbox.slicer] for bbox in bboxes], dim=0) # [TB, C, TH, TW] n_rep = len(bboxes) ts_tile = self.repeat_tensor(t_in, n_rep) cond_tile = self.repeat_tensor(c_crossattn, n_rep) c_tile = c_in.copy() c_tile['c_crossattn'] = cond_tile if 'time_context' in c_in: c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep) for key in c_tile: if key in ['y', 'c_concat']: icond = c_tile[key] if icond.shape[2:] == (self.h, self.w): c_tile[key] = torch.cat([icond[bbox.slicer] for bbox in bboxes]) else: c_tile[key] = self.repeat_tensor(icond, n_rep) # controlnet tiling # self.switch_controlnet_tensors(batch_id, N, len(bboxes)) if 'control' in c_in: control=c_in['control'] self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id) c_tile['control'] = control.get_control_orig(x_tile, ts_tile, c_tile, len(cond_or_uncond)) # stablesr tiling # self.switch_stablesr_tensors(batch_id) x_tile_out = model_function(x_tile, ts_tile, **c_tile) for i, bbox in enumerate(bboxes): self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] del x_tile_out, x_tile, ts_tile, c_tile # update progress bar # self.update_pbar() # Averaging background buffer x_out = torch.where(self.weights > 1, self.x_buffer / self.weights, self.x_buffer) return x_out class MixtureOfDiffusers(AbstractDiffusion): """ Mixture-of-Diffusers Implementation https://github.com/albarji/mixture-of-diffusers """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # weights for custom bboxes self.custom_weights: List[Tensor] = [] self.get_weight = gaussian_weights def init_done(self): super().init_done() # The original gaussian weights can be extremely small, so we rescale them for numerical stability self.rescale_factor = 1 / self.weights # Meanwhile, we rescale the custom weights in advance to save time of slicing for bbox_id, bbox in enumerate(self.custom_bboxes): if bbox.blend_mode == BlendMode.BACKGROUND: self.custom_weights[bbox_id] *= self.rescale_factor[bbox.slicer] @grid_bbox def get_tile_weights(self) -> Tensor: # weights for grid bboxes # if not hasattr(self, 'tile_weights'): # x_in can change sizes cause of ConditioningSetArea, so we have to recalcualte each time self.tile_weights = self.get_weight(self.tile_w, self.tile_h) return self.tile_weights @torch.inference_mode() def __call__(self, model_function: BaseModel.apply_model, args: dict): x_in: Tensor = args["input"] t_in: Tensor = args["timestep"] c_in: dict = args["c"] cond_or_uncond: List= args["cond_or_uncond"] c_crossattn: Tensor = c_in['c_crossattn'] N, C, H, W = x_in.shape self.refresh = False # self.refresh = True if self.weights is None or self.h != H or self.w != W: self.h, self.w = H, W self.refresh = True self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size) # init everything done, perform sanity check & pre-computations self.init_done() self.h, self.w = H, W # clear buffer canvas self.reset_buffer(x_in) # self.pbar = tqdm(total=(self.total_bboxes) * sampling_steps, desc=f"{self.method} Sampling: ") # self.pbar = tqdm(total=len(self.batched_bboxes), desc=f"{self.method} Sampling: ") # Global sampling if self.draw_background: for batch_id, bboxes in enumerate(self.batched_bboxes): # batch_id is the `Latent tile batch size` if comfy.model_management.processing_interrupted(): # self.pbar.close() return x_in # batching x_tile_list = [] t_tile_list = [] icond_map = {} # tcond_tile_list = [] # icond_tile_list = [] # vcond_tile_list = [] # control_list = [] for bbox in bboxes: x_tile_list.append(x_in[bbox.slicer]) t_tile_list.append(t_in) if isinstance(c_in, dict): # tcond # tcond_tile = c_crossattn #self.get_tcond(c_in) # cond, [1, 77, 768] # tcond_tile_list.append(tcond_tile) # present in sdxl for key in ['y', 'c_concat']: if key in c_in: icond=c_in[key] # self.get_icond(c_in) if icond.shape[2:] == (self.h, self.w): icond = icond[bbox.slicer] if icond_map.get(key, None) is None: icond_map[key] = [] icond_map[key].append(icond) # # vcond: # vcond = self.get_vcond(c_in) # vcond_tile_list.append(vcond) else: print('>> [WARN] not supported, make an issue on github!!') n_rep = len(bboxes) x_tile = torch.cat(x_tile_list, dim=0) # differs each t_tile = self.repeat_tensor(t_in, n_rep) # just repeat tcond_tile = self.repeat_tensor(c_crossattn, n_rep) # just repeat c_tile = c_in.copy() c_tile['c_crossattn'] = tcond_tile if 'time_context' in c_in: c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep) # just repeat for key in c_tile: if key in ['y', 'c_concat']: icond_tile = torch.cat(icond_map[key], dim=0) # differs each c_tile[key] = icond_tile # vcond_tile = torch.cat(vcond_tile_list, dim=0) if None not in vcond_tile_list else None # just repeat # controlnet # self.switch_controlnet_tensors(batch_id, N, len(bboxes), is_denoise=True) if 'control' in c_in: control=c_in['control'] self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id) c_tile['control'] = control.get_control_orig(x_tile, t_tile, c_tile, len(cond_or_uncond)) # stablesr # self.switch_stablesr_tensors(batch_id) # denoising: here the x is the noise x_tile_out = model_function(x_tile, t_tile, **c_tile) # de-batching for i, bbox in enumerate(bboxes): # These weights can be calcluated in advance, but will cost a lot of vram # when you have many tiles. So we calculate it here. w = self.tile_weights * self.rescale_factor[bbox.slicer] self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] * w del x_tile_out, x_tile, t_tile, c_tile # self.update_pbar() # self.pbar.update() # self.pbar.close() x_out = self.x_buffer return x_out MAX_RESOLUTION=8192 class TiledDiffusion(): @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), "method": (["MultiDiffusion", "Mixture of Diffusers"], {"default": "Mixture of Diffusers"}), # "tile_width": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}), "tile_width": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}), # "tile_height": ("INT", {"default": 96, "min": 16, "max": 256, "step": 16}), "tile_height": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}), "tile_overlap": ("INT", {"default": 8*opt_f, "min": 0, "max": 256*opt_f, "step": 4*opt_f}), "tile_batch_size": ("INT", {"default": 4, "min": 1, "max": MAX_RESOLUTION, "step": 1}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "apply" CATEGORY = "_for_testing" instances = WeakSet() @classmethod def IS_CHANGED(s, *args, **kwargs): for o in s.instances: o.impl.reset() return "" def __init__(self) -> None: self.__class__.instances.add(self) def apply(self, model: ModelPatcher, method, tile_width, tile_height, tile_overlap, tile_batch_size): if method == "Mixture of Diffusers": self.impl = MixtureOfDiffusers() else: self.impl = MultiDiffusion() # if noise_inversion: # get_cache_callback = self.noise_inverse_get_cache # set_cache_callback = None # lambda x0, xt, prompts: self.noise_inverse_set_cache(p, x0, xt, prompts, steps, retouch) # self.impl.init_noise_inverse(steps, retouch, get_cache_callback, set_cache_callback, renoise_strength, renoise_kernel_size) self.impl.tile_width = tile_width // opt_f self.impl.tile_height = tile_height // opt_f self.impl.tile_overlap = tile_overlap // opt_f self.impl.tile_batch_size = tile_batch_size # self.impl.init_grid_bbox(tile_width, tile_height, tile_overlap, tile_batch_size) # # init everything done, perform sanity check & pre-computations # self.impl.init_done() # hijack the behaviours # self.impl.hook() model = model.clone() model.set_model_unet_function_wrapper(self.impl) model.model_options['tiled_diffusion'] = True return (model,) class NoiseInversion(): @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "image": ("IMAGE", ), "steps": ("INT", {"default": 10, "min": 1, "max": 208, "step": 1}), "retouch": ("FLOAT", {"default": 1, "min": 1, "max": 100, "step": 0.1}), "renoise_strength": ("FLOAT", {"default": 1, "min": 1, "max": 2, "step": 0.01}), "renoise_kernel_size": ("INT", {"default": 2, "min": 2, "max": 512, "step": 1}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "sample" CATEGORY = "sampling" def sample(self, model: ModelPatcher, positive, negative, latent_image, image, steps, retouch, renoise_strength, renoise_kernel_size): return (latent_image,) NODE_CLASS_MAPPINGS = { "TiledDiffusion": TiledDiffusion, # "NoiseInversion": NoiseInversion, } NODE_DISPLAY_NAME_MAPPINGS = { "TiledDiffusion": "Tiled Diffusion", # "NoiseInversion": "Noise Inversion", }