''' # ------------------------------------------------------------------------ # # Tiled VAE # # Introducing a revolutionary new optimization designed to make # the VAE work with giant images on limited VRAM! # Say goodbye to the frustration of OOM and hello to seamless output! # # ------------------------------------------------------------------------ # # This script is a wild hack that splits the image into tiles, # encodes each tile separately, and merges the result back together. # # Advantages: # - The VAE can now work with giant images on limited VRAM # (~10 GB for 8K images!) # - The merged output is completely seamless without any post-processing. # # Drawbacks: # - NaNs always appear in for 8k images when you use fp16 (half) VAE # You must use --no-half-vae to disable half VAE for that giant image. # - The gradient calculation is not compatible with this hack. It # will break any backward() or torch.autograd.grad() that passes VAE. # (But you can still use the VAE to generate training data.) # # How it works: # 1. The image is split into tiles, which are then padded with 11/32 pixels' in the decoder/encoder. # 2. When Fast Mode is disabled: # 1. The original VAE forward is decomposed into a task queue and a task worker, which starts to process each tile. # 2. When GroupNorm is needed, it suspends, stores current GroupNorm mean and var, send everything to RAM, and turns to the next tile. # 3. After all GroupNorm means and vars are summarized, it applies group norm to tiles and continues. # 4. A zigzag execution order is used to reduce unnecessary data transfer. # 3. When Fast Mode is enabled: # 1. The original input is downsampled and passed to a separate task queue. # 2. Its group norm parameters are recorded and used by all tiles' task queues. # 3. Each tile is separately processed without any RAM-VRAM data transfer. # 4. After all tiles are processed, tiles are written to a result buffer and returned. # Encoder color fix = only estimate GroupNorm before downsampling, i.e., run in a semi-fast mode. # # Enjoy! # # @Author: LI YI @ Nanyang Technological University - Singapore # @Date: 2023-03-02 # @License: CC BY-NC-SA 4.0 # # Please give https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111 # a star if you like the project! # # ------------------------------------------------------------------------- ''' import gc import math from time import time from tqdm import tqdm import torch import torch.version import torch.nn.functional as F # import gradio as gr # import modules.scripts as scripts # from .modules import devices # from modules.shared import state # from modules.ui import gr_show # from modules.processing import opt_f # from modules.sd_vae_approx import cheap_approximation # from ldm.modules.diffusionmodules.model import AttnBlock, MemoryEfficientAttnBlock # from tile_utils.attn import get_attn_func # from tile_utils.typing import Processing import comfy import comfy.model_management from comfy.model_management import processing_interrupted import contextlib opt_C = 4 opt_f = 8 is_sdxl = False disable_nan_check = True class Device: ... devices = Device() devices.device = comfy.model_management.get_torch_device() devices.cpu = torch.device('cpu') devices.torch_gc = lambda: comfy.model_management.soft_empty_cache() devices.get_optimal_device = lambda: comfy.model_management.get_torch_device() class NansException(Exception): ... def test_for_nans(x, where): if disable_nan_check: return if not torch.all(torch.isnan(x)).item(): return if where == "unet": message = "A tensor with all NaNs was produced in Unet." if comfy.model_management.unet_dtype(x.device) != torch.float32: message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." elif where == "vae": message = "A tensor with all NaNs was produced in VAE." if comfy.model_management.unet_dtype(x.device) != torch.float32 and comfy.model_management.vae_dtype() != torch.float32: message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." else: message = "A tensor with all NaNs was produced." message += " Use --disable-nan-check commandline argument to disable this check." raise NansException(message) def _autocast(disable=False): if disable: return contextlib.nullcontext() if comfy.model_management.unet_dtype() == torch.float32 or comfy.model_management.get_torch_device() == torch.device("mps"): # or shared.cmd_opts.precision == "full": return contextlib.nullcontext() # only cuda autocast_device = comfy.model_management.get_autocast_device(comfy.model_management.get_torch_device()) return torch.autocast(autocast_device) def without_autocast(disable=False): return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() devices.test_for_nans = test_for_nans devices.autocast = _autocast devices.without_autocast = without_autocast def cheap_approximation(sample): # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2 if is_sdxl: coeffs = [ [ 0.3448, 0.4168, 0.4395], [-0.1953, -0.0290, 0.0250], [ 0.1074, 0.0886, -0.0163], [-0.3730, -0.2499, -0.2088], ] else: coeffs = [ [ 0.298, 0.207, 0.208], [ 0.187, 0.286, 0.173], [-0.158, 0.189, 0.264], [-0.184, -0.271, -0.473], ] coefs = torch.tensor(coeffs).to(sample.device) x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs) return x_sample def get_rcmd_enc_tsize(): if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]: total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20 if total_memory > 16*1000: ENCODER_TILE_SIZE = 3072 elif total_memory > 12*1000: ENCODER_TILE_SIZE = 2048 elif total_memory > 8*1000: ENCODER_TILE_SIZE = 1536 else: ENCODER_TILE_SIZE = 960 else: ENCODER_TILE_SIZE = 512 return ENCODER_TILE_SIZE def get_rcmd_dec_tsize(): if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]: total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20 if total_memory > 30*1000: DECODER_TILE_SIZE = 256 elif total_memory > 16*1000: DECODER_TILE_SIZE = 192 elif total_memory > 12*1000: DECODER_TILE_SIZE = 128 elif total_memory > 8*1000: DECODER_TILE_SIZE = 96 else: DECODER_TILE_SIZE = 64 else: DECODER_TILE_SIZE = 64 return DECODER_TILE_SIZE def inplace_nonlinearity(x): # Test: fix for Nans return F.silu(x, inplace=True) def _attn_forward(self, x): # From comfy.Idm.modules.diffusionmodules.model.AttnBlock.forward # However, the residual & normalization are removed and computed separately. h_ = x q = self.q(h_) k = self.k(h_) v = self.v(h_) h_ = self.optimized_attention(q, k, v) h_ = self.proj_out(h_) return h_ def get_attn_func(): return _attn_forward def attn2task(task_queue, net): attn_forward = get_attn_func() task_queue.append(('store_res', lambda x: x)) task_queue.append(('pre_norm', net.norm)) task_queue.append(('attn', lambda x, net=net: attn_forward(net, x))) task_queue.append(['add_res', None]) def resblock2task(queue, block): """ Turn a ResNetBlock into a sequence of tasks and append to the task queue @param queue: the target task queue @param block: ResNetBlock """ if block.in_channels != block.out_channels: if block.use_conv_shortcut: queue.append(('store_res', block.conv_shortcut)) else: queue.append(('store_res', block.nin_shortcut)) else: queue.append(('store_res', lambda x: x)) queue.append(('pre_norm', block.norm1)) queue.append(('silu', inplace_nonlinearity)) queue.append(('conv1', block.conv1)) queue.append(('pre_norm', block.norm2)) queue.append(('silu', inplace_nonlinearity)) queue.append(('conv2', block.conv2)) queue.append(['add_res', None]) def build_sampling(task_queue, net, is_decoder): """ Build the sampling part of a task queue @param task_queue: the target task queue @param net: the network @param is_decoder: currently building decoder or encoder """ if is_decoder: resblock2task(task_queue, net.mid.block_1) attn2task(task_queue, net.mid.attn_1) resblock2task(task_queue, net.mid.block_2) resolution_iter = reversed(range(net.num_resolutions)) block_ids = net.num_res_blocks + 1 condition = 0 module = net.up func_name = 'upsample' else: resolution_iter = range(net.num_resolutions) block_ids = net.num_res_blocks condition = net.num_resolutions - 1 module = net.down func_name = 'downsample' for i_level in resolution_iter: for i_block in range(block_ids): resblock2task(task_queue, module[i_level].block[i_block]) if i_level != condition: task_queue.append((func_name, getattr(module[i_level], func_name))) if not is_decoder: resblock2task(task_queue, net.mid.block_1) attn2task(task_queue, net.mid.attn_1) resblock2task(task_queue, net.mid.block_2) def build_task_queue(net, is_decoder): """ Build a single task queue for the encoder or decoder @param net: the VAE decoder or encoder network @param is_decoder: currently building decoder or encoder @return: the task queue """ task_queue = [] task_queue.append(('conv_in', net.conv_in)) # construct the sampling part of the task queue # because encoder and decoder share the same architecture, we extract the sampling part build_sampling(task_queue, net, is_decoder) if not is_decoder or not net.give_pre_end: task_queue.append(('pre_norm', net.norm_out)) task_queue.append(('silu', inplace_nonlinearity)) task_queue.append(('conv_out', net.conv_out)) if is_decoder and net.tanh_out: task_queue.append(('tanh', torch.tanh)) return task_queue def clone_task_queue(task_queue): """ Clone a task queue @param task_queue: the task queue to be cloned @return: the cloned task queue """ return [[item for item in task] for task in task_queue] def get_var_mean(input, num_groups, eps=1e-6): """ Get mean and var for group norm """ b, c = input.size(0), input.size(1) channel_in_group = int(c/num_groups) input_reshaped = input.contiguous().view(1, int(b * num_groups), channel_in_group, *input.size()[2:]) var, mean = torch.var_mean(input_reshaped, dim=[0, 2, 3, 4], unbiased=False) return var, mean def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6): """ Custom group norm with fixed mean and var @param input: input tensor @param num_groups: number of groups. by default, num_groups = 32 @param mean: mean, must be pre-calculated by get_var_mean @param var: var, must be pre-calculated by get_var_mean @param weight: weight, should be fetched from the original group norm @param bias: bias, should be fetched from the original group norm @param eps: epsilon, by default, eps = 1e-6 to match the original group norm @return: normalized tensor """ b, c = input.size(0), input.size(1) channel_in_group = int(c/num_groups) input_reshaped = input.contiguous().view( 1, int(b * num_groups), channel_in_group, *input.size()[2:]) out = F.batch_norm(input_reshaped, mean.to(input), var.to(input), weight=None, bias=None, training=False, momentum=0, eps=eps) out = out.view(b, c, *input.size()[2:]) # post affine transform if weight is not None: out *= weight.view(1, -1, 1, 1) if bias is not None: out += bias.view(1, -1, 1, 1) return out def crop_valid_region(x, input_bbox, target_bbox, is_decoder): """ Crop the valid region from the tile @param x: input tile @param input_bbox: original input bounding box @param target_bbox: output bounding box @param scale: scale factor @return: cropped tile """ padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox] margin = [target_bbox[i] - padded_bbox[i] for i in range(4)] return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]] # ↓↓↓ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↓↓↓ def perfcount(fn): def wrapper(*args, **kwargs): ts = time() if torch.cuda.is_available(): torch.cuda.reset_peak_memory_stats(devices.device) devices.torch_gc() gc.collect() ret = fn(*args, **kwargs) devices.torch_gc() gc.collect() if torch.cuda.is_available(): vram = torch.cuda.max_memory_allocated(devices.device) / 2**20 print(f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB') else: print(f'[Tiled VAE]: Done in {time() - ts:.3f}s') return ret return wrapper # ↑↑↑ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↑↑↑ class GroupNormParam: def __init__(self): self.var_list = [] self.mean_list = [] self.pixel_list = [] self.weight = None self.bias = None def add_tile(self, tile, layer): var, mean = get_var_mean(tile, 32) # For giant images, the variance can be larger than max float16 # In this case we create a copy to float32 if var.dtype == torch.float16 and var.isinf().any(): fp32_tile = tile.float() var, mean = get_var_mean(fp32_tile, 32) # ============= DEBUG: test for infinite ============= # if torch.isinf(var).any(): # print('[Tiled VAE]: inf test', var) # ==================================================== self.var_list.append(var) self.mean_list.append(mean) self.pixel_list.append( tile.shape[2]*tile.shape[3]) if hasattr(layer, 'weight'): self.weight = layer.weight self.bias = layer.bias else: self.weight = None self.bias = None def summary(self): """ summarize the mean and var and return a function that apply group norm on each tile """ if len(self.var_list) == 0: return None var = torch.vstack(self.var_list) mean = torch.vstack(self.mean_list) max_value = max(self.pixel_list) pixels = torch.tensor(self.pixel_list, dtype=torch.float32, device=devices.device) / max_value sum_pixels = torch.sum(pixels) pixels = pixels.unsqueeze(1) / sum_pixels # var = torch.sum(var * pixels.to(var.device), dim=0) # mean = torch.sum(mean * pixels.to(var.device), dim=0) var = torch.sum(var * pixels, dim=0) mean = torch.sum(mean * pixels, dim=0) return lambda x: custom_group_norm(x, 32, mean, var, self.weight, self.bias) @staticmethod def from_tile(tile, norm): """ create a function from a single tile without summary """ var, mean = get_var_mean(tile, 32) if var.dtype == torch.float16 and var.isinf().any(): fp32_tile = tile.float() var, mean = get_var_mean(fp32_tile, 32) # if it is a macbook, we need to convert back to float16 if var.device.type == 'mps': # clamp to avoid overflow var = torch.clamp(var, 0, 60000) var = var.half() mean = mean.half() if hasattr(norm, 'weight'): weight = norm.weight bias = norm.bias else: weight = None bias = None def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias): return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6) return group_norm_func class VAEHook: def __init__(self, net, tile_size, is_decoder:bool, fast_decoder:bool, fast_encoder:bool, color_fix:bool, to_gpu:bool=False): self.net = net # encoder | decoder self.tile_size = tile_size self.is_decoder = is_decoder self.fast_mode = (fast_encoder and not is_decoder) or (fast_decoder and is_decoder) self.color_fix = color_fix and not is_decoder self.to_gpu = to_gpu self.pad = 11 if is_decoder else 32 # FIXME: magic number def __call__(self, x): # original_device = next(self.net.parameters()).device try: # if self.to_gpu: # self.net = self.net.to(devices.get_optimal_device()) B, C, H, W = x.shape if False:#max(H, W) <= self.pad * 2 + self.tile_size: print("[Tiled VAE]: the input size is tiny and unnecessary to tile.", x.shape, self.pad * 2 + self.tile_size) return self.net.original_forward(x) else: return self.vae_tile_forward(x) finally: pass # self.net = self.net.to(original_device) def get_best_tile_size(self, lowerbound, upperbound): """ Get the best tile size for GPU memory """ divider = 32 while divider >= 2: remainer = lowerbound % divider if remainer == 0: return lowerbound candidate = lowerbound - remainer + divider if candidate <= upperbound: return candidate divider //= 2 return lowerbound def split_tiles(self, h, w): """ Tool function to split the image into tiles @param h: height of the image @param w: width of the image @return: tile_input_bboxes, tile_output_bboxes """ tile_input_bboxes, tile_output_bboxes = [], [] tile_size = self.tile_size pad = self.pad num_height_tiles = math.ceil((h - 2 * pad) / tile_size) num_width_tiles = math.ceil((w - 2 * pad) / tile_size) # If any of the numbers are 0, we let it be 1 # This is to deal with long and thin images num_height_tiles = max(num_height_tiles, 1) num_width_tiles = max(num_width_tiles, 1) # Suggestions from https://github.com/Kahsolt: auto shrink the tile size real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles) real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles) real_tile_height = self.get_best_tile_size(real_tile_height, tile_size) real_tile_width = self.get_best_tile_size(real_tile_width, tile_size) print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' + f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}') for i in range(num_height_tiles): for j in range(num_width_tiles): # bbox: [x1, x2, y1, y2] # the padding is is unnessary for image borders. So we directly start from (32, 32) input_bbox = [ pad + j * real_tile_width, min(pad + (j + 1) * real_tile_width, w), pad + i * real_tile_height, min(pad + (i + 1) * real_tile_height, h), ] # if the output bbox is close to the image boundary, we extend it to the image boundary output_bbox = [ input_bbox[0] if input_bbox[0] > pad else 0, input_bbox[1] if input_bbox[1] < w - pad else w, input_bbox[2] if input_bbox[2] > pad else 0, input_bbox[3] if input_bbox[3] < h - pad else h, ] # scale to get the final output bbox output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox] tile_output_bboxes.append(output_bbox) # indistinguishable expand the input bbox by pad pixels tile_input_bboxes.append([ max(0, input_bbox[0] - pad), min(w, input_bbox[1] + pad), max(0, input_bbox[2] - pad), min(h, input_bbox[3] + pad), ]) return tile_input_bboxes, tile_output_bboxes @torch.no_grad() def estimate_group_norm(self, z, task_queue, color_fix): device = z.device tile = z last_id = len(task_queue) - 1 while last_id >= 0 and task_queue[last_id][0] != 'pre_norm': last_id -= 1 if last_id <= 0 or task_queue[last_id][0] != 'pre_norm': raise ValueError('No group norm found in the task queue') # estimate until the last group norm for i in range(last_id + 1): task = task_queue[i] if task[0] == 'pre_norm': group_norm_func = GroupNormParam.from_tile(tile, task[1]) task_queue[i] = ('apply_norm', group_norm_func) if i == last_id: return True tile = group_norm_func(tile) elif task[0] == 'store_res': task_id = i + 1 while task_id < last_id and task_queue[task_id][0] != 'add_res': task_id += 1 if task_id >= last_id: continue task_queue[task_id][1] = task[1](tile) elif task[0] == 'add_res': tile += task[1].to(device) task[1] = None elif color_fix and task[0] == 'downsample': for j in range(i, last_id + 1): if task_queue[j][0] == 'store_res': task_queue[j] = ('store_res_cpu', task_queue[j][1]) return True else: tile = task[1](tile) try: devices.test_for_nans(tile, "vae") except: print(f'Nan detected in fast mode estimation. Fast mode disabled.') return False raise IndexError('Should not reach here') @perfcount @torch.no_grad() def vae_tile_forward(self, z): """ Decode a latent vector z into an image in a tiled manner. @param z: latent vector @return: image """ device = next(self.net.parameters()).device net = self.net tile_size = self.tile_size is_decoder = self.is_decoder z = z.detach() # detach the input to avoid backprop N, height, width = z.shape[0], z.shape[2], z.shape[3] net.last_z_shape = z.shape # Split the input into tiles and build a task queue for each tile print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}') in_bboxes, out_bboxes = self.split_tiles(height, width) # Prepare tiles by split the input latents tiles = [] for input_bbox in in_bboxes: tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu() tiles.append(tile) num_tiles = len(tiles) num_completed = 0 # Build task queues single_task_queue = build_task_queue(net, is_decoder) if self.fast_mode: # Fast mode: downsample the input image to the tile size, # then estimate the group norm parameters on the downsampled image scale_factor = tile_size / max(height, width) z = z.to(device) downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact') # use nearest-exact to keep statictics as close as possible print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image') # ======= Special thanks to @Kahsolt for distribution shift issue ======= # # The downsampling will heavily distort its mean and std, so we need to recover it. std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True) std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True) downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old del std_old, mean_old, std_new, mean_new # occasionally the std_new is too small or too large, which exceeds the range of float16 # so we need to clamp it to max z's range. downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max()) estimate_task_queue = clone_task_queue(single_task_queue) if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix): single_task_queue = estimate_task_queue del downsampled_z task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)] # Dummy result result = None result_approx = None try: with devices.autocast(): result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu() except: pass # Free memory of input latent tensor del z # Task queue execution pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ") pbar_comfy = comfy.utils.ProgressBar(num_tiles * len(task_queues[0])) # execute the task back and forth when switch tiles so that we always # keep one tile on the GPU to reduce unnecessary data transfer forward = True interrupted = False state_interrupted = processing_interrupted() #state.interrupted = interrupted while True: if state_interrupted: interrupted = True ; break group_norm_param = GroupNormParam() for i in range(num_tiles) if forward else reversed(range(num_tiles)): if state_interrupted: interrupted = True ; break tile = tiles[i].to(device) input_bbox = in_bboxes[i] task_queue = task_queues[i] interrupted = False while len(task_queue) > 0: if state_interrupted: interrupted = True ; break # DEBUG: current task # print('Running task: ', task_queue[0][0], ' on tile ', i, '/', num_tiles, ' with shape ', tile.shape) task = task_queue.pop(0) if task[0] == 'pre_norm': group_norm_param.add_tile(tile, task[1]) break elif task[0] == 'store_res' or task[0] == 'store_res_cpu': task_id = 0 res = task[1](tile) if not self.fast_mode or task[0] == 'store_res_cpu': res = res.cpu() while task_queue[task_id][0] != 'add_res': task_id += 1 task_queue[task_id][1] = res elif task[0] == 'add_res': tile += task[1].to(device) task[1] = None else: tile = task[1](tile) pbar.update(1) pbar_comfy.update(1) if interrupted: break # check for NaNs in the tile. # If there are NaNs, we abort the process to save user's time devices.test_for_nans(tile, "vae") if len(task_queue) == 0: tiles[i] = None num_completed += 1 if result is None: # NOTE: dim C varies from different cases, can only be inited dynamically result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False) result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder) del tile elif i == num_tiles - 1 and forward: forward = False tiles[i] = tile elif i == 0 and not forward: forward = True tiles[i] = tile else: tiles[i] = tile.cpu() del tile if interrupted: break if num_completed == num_tiles: break # insert the group norm task to the head of each task queue group_norm_func = group_norm_param.summary() if group_norm_func is not None: for i in range(num_tiles): task_queue = task_queues[i] task_queue.insert(0, ('apply_norm', group_norm_func)) # Done! pbar.close() if interrupted: del result, result_approx comfy.model_management.throw_exception_if_processing_interrupted() vae_dtype = comfy.model_management.vae_dtype() return result.to(dtype=vae_dtype, device=device) if result is not None else result_approx.to(device=device, dtype=vae_dtype) # from .tiled_vae import VAEHook, get_rcmd_enc_tsize, get_rcmd_dec_tsize from nodes import VAEEncode, VAEDecode class TiledVAE: def process(self, *args, **kwargs): samples = kwargs['samples'] if 'samples' in kwargs else (kwargs['pixels'] if 'pixels' in kwargs else args[0]) _vae = kwargs['vae'] if 'vae' in kwargs else args[1] tile_size = kwargs['tile_size'] if 'tile_size' in kwargs else args[2] fast = kwargs['fast'] if 'fast' in kwargs else args[3] color_fix = kwargs['color_fix'] if 'color_fix' in kwargs else False is_decoder = self.is_decoder # for shorthand vae = _vae.first_stage_model encoder = vae.encoder decoder = vae.decoder # # undo hijack if disabled (in cases last time crashed) # if not enabled: # if self.hooked: if isinstance(encoder.forward, VAEHook): encoder.forward.net = None encoder.forward = encoder.original_forward if isinstance(decoder.forward, VAEHook): decoder.forward.net = None decoder.forward = decoder.original_forward # self.hooked = False # return # if devices.get_optimal_device_name().startswith('cuda') and vae.device == devices.cpu and not vae_to_gpu: # print("[Tiled VAE] warn: VAE is not on GPU, check 'Move VAE to GPU' if possible.") # do hijack # kwargs = { # 'fast_decoder': fast_decoder, # 'fast_encoder': fast_encoder, # 'color_fix': color_fix, # 'to_gpu': vae_to_gpu, # } # save original forward (only once) if not hasattr(encoder, 'original_forward'): setattr(encoder, 'original_forward', encoder.forward) if not hasattr(decoder, 'original_forward'): setattr(decoder, 'original_forward', decoder.forward) # self.hooked = True # encoder.forward = VAEHook(encoder, encoder_tile_size, is_decoder=False, **kwargs) # decoder.forward = VAEHook(decoder, decoder_tile_size, is_decoder=True, **kwargs) fn = VAEHook(net=decoder if is_decoder else encoder, tile_size=tile_size // 8 if is_decoder else tile_size, is_decoder=is_decoder, fast_decoder=fast, fast_encoder=fast, color_fix=color_fix, to_gpu=comfy.model_management.vae_device().type != 'cpu') if is_decoder: decoder.forward = fn else: encoder.forward = fn ret = (None,) try: with devices.without_autocast(): if not is_decoder: ret = VAEEncode().encode(_vae, samples) else: ret = VAEDecode().decode(_vae, samples) if is_decoder else VAEEncode().encode(_vae, samples) finally: if isinstance(encoder.forward, VAEHook): encoder.forward.net = None encoder.forward = encoder.original_forward if isinstance(decoder.forward, VAEHook): decoder.forward.net = None decoder.forward = decoder.original_forward return ret class VAEEncodeTiled_TiledDiffusion(TiledVAE): @classmethod def INPUT_TYPES(s): fast = True tile_size = get_rcmd_enc_tsize() return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ), "tile_size": ("INT", {"default": tile_size, "min": 256, "max": 4096, "step": 16}), "fast": ("BOOLEAN", {"default": fast}), "color_fix": ("BOOLEAN", {"default": fast}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "process" CATEGORY = "_for_testing" def __init__(self): self.is_decoder = False super().__init__() class VAEDecodeTiled_TiledDiffusion(TiledVAE): @classmethod def INPUT_TYPES(s): tile_size = get_rcmd_dec_tsize() * opt_f return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ), "tile_size": ("INT", {"default": tile_size, "min": 48*opt_f, "max": 4096, "step": 16}), "fast": ("BOOLEAN", {"default": True}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "process" CATEGORY = "_for_testing" def __init__(self): self.is_decoder = True super().__init__() NODE_CLASS_MAPPINGS = { "VAEEncodeTiled_TiledDiffusion": VAEEncodeTiled_TiledDiffusion, "VAEDecodeTiled_TiledDiffusion": VAEDecodeTiled_TiledDiffusion, } NODE_DISPLAY_NAME_MAPPINGS = { "VAEEncodeTiled_TiledDiffusion": "Tiled VAE Encode", "VAEDecodeTiled_TiledDiffusion": "Tiled VAE Decode", }