Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
5 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input as resnet_preprocess_input
|
6 |
+
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input as mobilenet_preprocess_input
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
+
|
9 |
+
# Load your trained models
|
10 |
+
resnet_model = load_model('/Users/beharademi/Documents/ZHAW/6. Sem LOKAL/KI/module exam/ademibeh/resnet_best_model.keras') # Update path
|
11 |
+
mobilenet_model = load_model('/Users/beharademi/Documents/ZHAW/6. Sem LOKAL/KI/module exam/ademibeh/mobilenet_best_model.keras') # Update path
|
12 |
+
|
13 |
+
def predict_comic_character(img, model_type):
|
14 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB')
|
15 |
+
img = img.resize((224, 224)) # Resize the image to fit model input
|
16 |
+
img_array = keras_image.img_to_array(img)
|
17 |
+
img_array = np.expand_dims(img_array, axis=0)
|
18 |
+
|
19 |
+
if model_type == 'ResNet50':
|
20 |
+
img_array = resnet_preprocess_input(img_array)
|
21 |
+
prediction = resnet_model.predict(img_array)
|
22 |
+
elif model_type == 'MobileNetV2':
|
23 |
+
img_array = mobilenet_preprocess_input(img_array)
|
24 |
+
prediction = mobilenet_model.predict(img_array)
|
25 |
+
else:
|
26 |
+
return {"error": "Invalid model type selected"}
|
27 |
+
|
28 |
+
classes = ['Superman', 'Batman', 'WonderWoman', 'Riddler', 'Spider-Man', 'Iron-Man',
|
29 |
+
'Hulk', 'The Joker', 'Magneto', 'Wolverine', 'Deadpool', 'Catwoman']
|
30 |
+
|
31 |
+
return {classes[i]: float(prediction[0][i]) for i in range(len(classes))}
|
32 |
+
|
33 |
+
# Define the Gradio interface
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=predict_comic_character,
|
36 |
+
inputs="image",
|
37 |
+
outputs="label",
|
38 |
+
title="Comic Character Classifier",
|
39 |
+
description="Upload an image of a comic character and the classifier will predict the character.",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the interface
|
43 |
+
interface.launch()
|