Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
# Load GPT-2 model and tokenizer
|
6 |
+
model_name = "openai-community/gpt2-xl"
|
7 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Set up sentiment analysis pipeline
|
11 |
+
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
12 |
+
|
13 |
+
# Streamlit UI
|
14 |
+
st.title("GPT-2 Movie Review Sentiment Analysis")
|
15 |
+
|
16 |
+
# Input text for sentiment analysis
|
17 |
+
input_text = st.text_area("Enter movie review:", "")
|
18 |
+
|
19 |
+
# Choose analysis type
|
20 |
+
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
21 |
+
|
22 |
+
if st.button("Analyze Sentiment"):
|
23 |
+
# Perform sentiment analysis based on the selected type
|
24 |
+
if analysis_type == "Zero-shot":
|
25 |
+
results = sentiment_analysis(input_text)
|
26 |
+
elif analysis_type == "One-shot":
|
27 |
+
prompt = "This movie review is about a "
|
28 |
+
input_text = prompt + input_text
|
29 |
+
results = sentiment_analysis(input_text)
|
30 |
+
elif analysis_type == "Few-shot":
|
31 |
+
prompt = "This movie review is about a positive topic. " + input_text
|
32 |
+
results = sentiment_analysis(prompt)
|
33 |
+
|
34 |
+
# Display results
|
35 |
+
st.write("Sentiment:", results[0]['label'])
|
36 |
+
st.write("Confidence:", results[0]['score'])
|
37 |
+
|
38 |
+
# Note: This is a basic example, and you might need to fine-tune it based on your specific use case and requirements.
|