Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,36 +2,35 @@ import os
|
|
2 |
import requests
|
3 |
import streamlit as st
|
4 |
|
5 |
-
API_URL = "https://api-inference.huggingface.co/models/
|
6 |
API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
7 |
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
8 |
|
9 |
-
def get_sentiment_category(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
return "Negative"
|
15 |
else:
|
16 |
-
return "
|
17 |
|
18 |
-
st.title("
|
19 |
|
20 |
input_text = st.text_area("Enter movie review:", "")
|
21 |
|
22 |
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
23 |
|
24 |
if analysis_type == "Zero-shot":
|
25 |
-
prompt = f"
|
26 |
|
27 |
elif analysis_type == "One-shot":
|
28 |
example = st.text_area("Input one example:")
|
29 |
-
prompt = f"
|
30 |
|
31 |
elif analysis_type == "Few-shot":
|
32 |
examples = st.text_area("Input few-shot examples, one per line:")
|
33 |
examples_list = examples.split('\n')
|
34 |
-
prompt = f"
|
35 |
|
36 |
if st.button("Analyze"):
|
37 |
try:
|
@@ -40,14 +39,22 @@ if st.button("Analyze"):
|
|
40 |
|
41 |
result = response.json()[0]['generated_text']
|
42 |
|
43 |
-
# Extract sentiment
|
44 |
sentiment_start = result.find("Sentiment:") + len("Sentiment:")
|
45 |
sentiment_end = result.find(".", sentiment_start)
|
46 |
-
|
47 |
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
st.write(f"Sentiment: {sentiment_category}")
|
51 |
|
52 |
except requests.exceptions.RequestException as e:
|
53 |
-
st.error("Error reaching API\n{}".format(e))
|
|
|
2 |
import requests
|
3 |
import streamlit as st
|
4 |
|
5 |
+
API_URL = "https://api-inference.huggingface.co/models/gpt2" # Updated API endpoint
|
6 |
API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
7 |
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
8 |
|
9 |
+
def get_sentiment_category(sentiment_score):
|
10 |
+
if sentiment_score > 0:
|
11 |
+
return "positive"
|
12 |
+
elif sentiment_score < 0:
|
13 |
+
return "negative"
|
|
|
14 |
else:
|
15 |
+
return "mixed"
|
16 |
|
17 |
+
st.title("GPT-2 Movie Review Sentiment Analysis")
|
18 |
|
19 |
input_text = st.text_area("Enter movie review:", "")
|
20 |
|
21 |
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
22 |
|
23 |
if analysis_type == "Zero-shot":
|
24 |
+
prompt = f"Sentiment analysis of the following movie review: \n\n{input_text}\n\nSentiment:"
|
25 |
|
26 |
elif analysis_type == "One-shot":
|
27 |
example = st.text_area("Input one example:")
|
28 |
+
prompt = f"{example}\n\nMovie review:\n{input_text}\n\nSentiment:"
|
29 |
|
30 |
elif analysis_type == "Few-shot":
|
31 |
examples = st.text_area("Input few-shot examples, one per line:")
|
32 |
examples_list = examples.split('\n')
|
33 |
+
prompt = f"Sentiment analysis examples: \n{', '.join(examples_list)}\n\nMovie review: \n{input_text}\n\nSentiment:"
|
34 |
|
35 |
if st.button("Analyze"):
|
36 |
try:
|
|
|
39 |
|
40 |
result = response.json()[0]['generated_text']
|
41 |
|
42 |
+
# Extract sentiment score and category
|
43 |
sentiment_start = result.find("Sentiment:") + len("Sentiment:")
|
44 |
sentiment_end = result.find(".", sentiment_start)
|
45 |
+
sentiment_score_text = result[sentiment_start:sentiment_end].strip()
|
46 |
|
47 |
+
# Extract only the numerical part of the score
|
48 |
+
if '/' in sentiment_score_text:
|
49 |
+
sentiment_score_text = sentiment_score_text.split('/')[0]
|
50 |
+
|
51 |
+
try:
|
52 |
+
sentiment_score = float(sentiment_score_text.split()[0])
|
53 |
+
except ValueError:
|
54 |
+
sentiment_score = None
|
55 |
+
|
56 |
+
sentiment_category = get_sentiment_category(sentiment_score) if sentiment_score is not None else "mixed"
|
57 |
st.write(f"Sentiment: {sentiment_category}")
|
58 |
|
59 |
except requests.exceptions.RequestException as e:
|
60 |
+
st.error("Error reaching API\n{}".format(e))
|