Spaces:
Sleeping
Sleeping
update app
Browse files- app.py +90 -169
- find_direction.py +1 -0
- generator.py +2 -2
- psp_wrapper.py +8 -5
app.py
CHANGED
@@ -4,11 +4,27 @@ import dnnlib
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
DESCRIPTION = '''# <a href="https://github.com/catlab-team/stylemc"> StyleMC:</a> Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
|
@@ -16,171 +32,76 @@ DESCRIPTION = '''# <a href="https://github.com/catlab-team/stylemc"> StyleMC:</a
|
|
16 |
FOOTER = 'This space is built by <a href = "https://github.com/catlab-team">Catlab Team</a>.'
|
17 |
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
with gr.Column():
|
30 |
-
with gr.Row():
|
31 |
-
text = gr.Textbox(
|
32 |
-
label="Enter your prompt",
|
33 |
-
show_label=False,
|
34 |
-
max_lines=1,
|
35 |
-
placeholder="Enter your prompt",
|
36 |
-
).style(
|
37 |
-
container=False,
|
38 |
-
)
|
39 |
-
identity_loss_weight = gr.Slider(0.1,
|
40 |
-
10,
|
41 |
-
value=0.5,
|
42 |
-
step=0.1,
|
43 |
-
label='Identity Loss Weight',
|
44 |
-
interactive=True)
|
45 |
-
btn = gr.Button("Find Direction").style(full_width=False)
|
46 |
-
|
47 |
-
with gr.Box():
|
48 |
-
gr.Markdown('''## Step 2 (Manipulation)
|
49 |
-
- Please upload an image for manipulation:
|
50 |
-
- You can also select the **previous directions** and determine the **manipulation strength**.
|
51 |
-
- Hit the **Generate** button.
|
52 |
-
''')
|
53 |
-
with gr.Row():
|
54 |
-
identity_loss_weight = gr.Slider(0.1,
|
55 |
-
100,
|
56 |
-
value=50,
|
57 |
-
step=0.1,
|
58 |
-
label='Manipulation Strength',
|
59 |
-
interactive=True)
|
60 |
-
with gr.Row():
|
61 |
-
with gr.Column():
|
62 |
-
with gr.Row():
|
63 |
-
input_image = gr.Image(label='Input Image',
|
64 |
-
type='filepath')
|
65 |
-
with gr.Row():
|
66 |
-
generate_button = gr.Button('Generate')
|
67 |
-
with gr.Column():
|
68 |
-
with gr.Row():
|
69 |
-
generated_image = gr.Image(label='Generated Image',
|
70 |
-
type='numpy',
|
71 |
-
interactive=False)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# with gr.Box():
|
77 |
-
# gr.Markdown('''## Step 2 (Select Style Image)
|
78 |
-
# - Select **Style Type**.
|
79 |
-
# - Select **Style Image Index** from the image table below.
|
80 |
-
# ''')
|
81 |
-
# with gr.Row():
|
82 |
-
# with gr.Column():
|
83 |
-
# style_type = gr.Radio(model.style_types,
|
84 |
-
# label='Style Type')
|
85 |
-
# text = get_style_image_markdown_text('cartoon')
|
86 |
-
# style_image = gr.Markdown(value=text)
|
87 |
-
# style_index = gr.Slider(0,
|
88 |
-
# 316,
|
89 |
-
# value=26,
|
90 |
-
# step=1,
|
91 |
-
# label='Style Image Index')
|
92 |
-
|
93 |
-
# with gr.Row():
|
94 |
-
# example_styles = gr.Dataset(
|
95 |
-
# components=[style_type, style_index],
|
96 |
-
# samples=[
|
97 |
-
# ['cartoon', 26],
|
98 |
-
# ['caricature', 65],
|
99 |
-
# ['arcane', 63],
|
100 |
-
# ['pixar', 80],
|
101 |
-
# ])
|
102 |
-
|
103 |
-
# with gr.Box():
|
104 |
-
# gr.Markdown('''## Step 3 (Generate Style Transferred Image)
|
105 |
-
# - Adjust **Structure Weight** and **Color Weight**.
|
106 |
-
# - These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
|
107 |
-
# - Hit the **Generate** button.
|
108 |
-
# ''')
|
109 |
-
# with gr.Row():
|
110 |
-
# with gr.Column():
|
111 |
-
# with gr.Row():
|
112 |
-
# structure_weight = gr.Slider(0,
|
113 |
-
# 1,
|
114 |
-
# value=0.6,
|
115 |
-
# step=0.1,
|
116 |
-
# label='Structure Weight')
|
117 |
-
# with gr.Row():
|
118 |
-
# color_weight = gr.Slider(0,
|
119 |
-
# 1,
|
120 |
-
# value=1,
|
121 |
-
# step=0.1,
|
122 |
-
# label='Color Weight')
|
123 |
-
# with gr.Row():
|
124 |
-
# structure_only = gr.Checkbox(label='Structure Only')
|
125 |
-
# with gr.Row():
|
126 |
-
# generate_button = gr.Button('Generate')
|
127 |
-
|
128 |
-
# with gr.Column():
|
129 |
-
# result = gr.Image(label='Result')
|
130 |
-
|
131 |
-
# with gr.Row():
|
132 |
-
# example_weights = gr.Dataset(
|
133 |
-
# components=[structure_weight, color_weight],
|
134 |
-
# samples=[
|
135 |
-
# [0.6, 1.0],
|
136 |
-
# [0.3, 1.0],
|
137 |
-
# [0.0, 1.0],
|
138 |
-
# [1.0, 0.0],
|
139 |
-
# ])
|
140 |
-
|
141 |
-
gr.Markdown(FOOTER)
|
142 |
-
|
143 |
-
# preprocess_button.click(fn=model.detect_and_align_face,
|
144 |
-
# inputs=input_image,
|
145 |
-
# outputs=aligned_face)
|
146 |
-
# aligned_face.change(fn=model.reconstruct_face,
|
147 |
-
# inputs=aligned_face,
|
148 |
-
# outputs=[
|
149 |
-
# reconstructed_face,
|
150 |
-
# instyle,
|
151 |
-
# ])
|
152 |
-
# style_type.change(fn=update_slider,
|
153 |
-
# inputs=style_type,
|
154 |
-
# outputs=style_index)
|
155 |
-
# style_type.change(fn=update_style_image,
|
156 |
-
# inputs=style_type,
|
157 |
-
# outputs=style_image)
|
158 |
-
# generate_button.click(fn=model.generate,
|
159 |
-
# inputs=[
|
160 |
-
# style_type,
|
161 |
-
# style_index,
|
162 |
-
# structure_weight,
|
163 |
-
# color_weight,
|
164 |
-
# structure_only,
|
165 |
-
# instyle,
|
166 |
-
# ],
|
167 |
-
# outputs=result)
|
168 |
-
# example_images.click(fn=set_example_image,
|
169 |
-
# inputs=example_images,
|
170 |
-
# outputs=example_images.components)
|
171 |
-
# example_styles.click(fn=set_example_styles,
|
172 |
-
# inputs=example_styles,
|
173 |
-
# outputs=example_styles.components)
|
174 |
-
# example_weights.click(fn=set_example_weights,
|
175 |
-
# inputs=example_weights,
|
176 |
-
# outputs=example_weights.components)
|
177 |
-
|
178 |
-
demo.launch(
|
179 |
-
# enable_queue=args.enable_queue,
|
180 |
-
# server_port=args.port,
|
181 |
-
# share=args.share,
|
182 |
-
)
|
183 |
|
184 |
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
+
import find_direction
|
8 |
+
import generator
|
9 |
+
import psp_wrapper
|
10 |
+
|
11 |
+
|
12 |
+
psp_encoder_path = "./pretrained/e4e_ffhq_encode.pt"
|
13 |
+
landmarks_path = "./pretrained/shape_predictor_68_face_landmarks.dat"
|
14 |
+
e4e_embedder = psp_wrapper.psp_encoder(psp_encoder_path, landmarks_path)
|
15 |
+
G_ffhq_path = "./pretrained/ffhq.pkl"
|
16 |
+
G_metfaces_path = "./pretrained/metfaces.pkl"
|
17 |
|
18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
with dnnlib.util.open_url(G_ffhq_path) as f:
|
21 |
+
G_ffhq = legacy.load_network_pkl(f)['G_ema'].to(device)
|
22 |
+
|
23 |
+
with dnnlib.util.open_url(G_metfaces_path) as f:
|
24 |
+
G_metfaces = legacy.load_network_pkl(f)['G_ema'].to(device)
|
25 |
+
|
26 |
+
G_dict = {"FFHQ": G_ffhq, "MetFaces": G_metfaces}
|
27 |
+
|
28 |
|
29 |
|
30 |
DESCRIPTION = '''# <a href="https://github.com/catlab-team/stylemc"> StyleMC:</a> Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
|
|
|
32 |
FOOTER = 'This space is built by <a href = "https://github.com/catlab-team">Catlab Team</a>.'
|
33 |
|
34 |
|
35 |
+
def add_direction(prompt, stylegan_type, id_loss_w):
|
36 |
+
new_dir_name = prompt+" "+stylegan_type+" w_id_loss"+str(id_loss_w)
|
37 |
+
if (prompt != None) and (new_dir_name not in direction_list):
|
38 |
+
print("adding direction with id:", new_dir_name)
|
39 |
+
direction = find_direction.find_direction(G_dict[stylegan_type], prompt)
|
40 |
+
print(f"new direction calculated with {stylegan_type} and id loss weight = {id_loss_w}")
|
41 |
+
direction_list.append(new_dir_name)
|
42 |
+
direction_map[new_dir_name]={"direction":direction, "stylegan_type":stylegan_type}
|
43 |
+
|
44 |
+
return gr.Radio.update(choices=direction_list, value=None, visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
+
def generate_output_image(image_path, direction_id, change_power):
|
48 |
+
direction = direction_map[direction_id]["direction"]
|
49 |
+
G=G_dict["FFHQ"]
|
50 |
+
|
51 |
+
w = e4e_embedder.get_w(image_path) # numpy array
|
52 |
+
s = generator.w_to_s(GIn=G, wsIn=w)
|
53 |
+
output_image = generator.generate_from_style(
|
54 |
+
GIn=G,
|
55 |
+
styles=s,
|
56 |
+
styles_direction=direction,
|
57 |
+
change_power=change_power,
|
58 |
+
outdir='.'
|
59 |
+
)
|
60 |
+
return output_image
|
61 |
+
|
62 |
+
with gr.Blocks(css="style.css") as demo:
|
63 |
+
gr.Markdown(DESCRIPTION)
|
64 |
+
|
65 |
+
with gr.Box():
|
66 |
+
gr.Markdown('''## Step 1 (Finding a global manipulation direction) - Please enter the target **text prompt** and **identity loss weight** to find global manipulation direction: - Hit the **Find Direction** button.''')
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
style_gan_type = gr.Radio(["FFHQ", "MetFaces"], value = "FFHQ", label="StyleGAN Type", interactive=True)
|
70 |
+
with gr.Column():
|
71 |
+
identity_loss_weight = gr.Slider(
|
72 |
+
0.1, 10, value=0.5, step=0.1,label="Identity Loss Weight",interactive=True
|
73 |
+
)
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
with gr.Row():
|
77 |
+
text = gr.Textbox(
|
78 |
+
label="Enter your prompt",
|
79 |
+
show_label=False,
|
80 |
+
max_lines=1,
|
81 |
+
placeholder="Enter your prompt"
|
82 |
+
).style(container=False)
|
83 |
+
|
84 |
+
find_direction_btn = gr.Button("Find Direction").style(full_width=False)
|
85 |
+
|
86 |
+
with gr.Box():
|
87 |
+
gr.Markdown('''## Step 2 (Manipulation) - Please upload an image for manipulation: - You can also select the **previous directions** and determine the **manipulation strength**. - Hit the **Generate** button.''')
|
88 |
+
with gr.Row():
|
89 |
+
direction_radio = gr.Radio(direction_list, label="List of Directions")
|
90 |
+
with gr.Row():
|
91 |
+
manipulation_strength = gr.Slider(
|
92 |
+
0.1, 100, value=25, step=0.1, label="Manipulation Strength",interactive=True
|
93 |
+
)
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column():
|
96 |
+
with gr.Row():
|
97 |
+
input_image = gr.Image(label="Input Image", type="filepath")
|
98 |
+
with gr.Row():
|
99 |
+
generate_btn = gr.Button("Generate")
|
100 |
+
with gr.Column():
|
101 |
+
with gr.Row():
|
102 |
+
generated_image = gr.Image(label="Generated Image",type="pil",interactive=False)
|
103 |
+
|
104 |
+
find_direction_btn.click(add_direction, inputs=[text, style_gan_type, identity_loss_weight], outputs=direction_radio)
|
105 |
+
generate_btn.click(generate_output_image, inputs=[input_image, direction_radio,manipulation_strength], outputs=generated_image)
|
106 |
+
|
107 |
+
demo.launch(debug=True)
|
find_direction.py
CHANGED
@@ -22,6 +22,7 @@ from torch_utils.ops import upfirdn2d
|
|
22 |
import id_loss
|
23 |
from copy import deepcopy
|
24 |
|
|
|
25 |
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
|
26 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
27 |
w_iter = iter(ws.unbind(dim=1))
|
|
|
22 |
import id_loss
|
23 |
from copy import deepcopy
|
24 |
|
25 |
+
|
26 |
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
|
27 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
28 |
w_iter = iter(ws.unbind(dim=1))
|
generator.py
CHANGED
@@ -31,7 +31,7 @@ from torch import linalg as LA
|
|
31 |
import torch.nn.functional as F
|
32 |
|
33 |
|
34 |
-
def block_forward(self, x, img, ws, shapes, force_fp32=
|
35 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
36 |
w_iter = iter(ws.unbind(dim=1))
|
37 |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
@@ -74,7 +74,7 @@ def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None
|
|
74 |
return x, img
|
75 |
|
76 |
|
77 |
-
def block_forward_from_style(self, x, img, ws, shapes, force_fp32=
|
78 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
79 |
w_iter = iter(ws.unbind(dim=1))
|
80 |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
|
|
31 |
import torch.nn.functional as F
|
32 |
|
33 |
|
34 |
+
def block_forward(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs):
|
35 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
36 |
w_iter = iter(ws.unbind(dim=1))
|
37 |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
|
|
74 |
return x, img
|
75 |
|
76 |
|
77 |
+
def block_forward_from_style(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs):
|
78 |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
79 |
w_iter = iter(ws.unbind(dim=1))
|
80 |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
psp_wrapper.py
CHANGED
@@ -31,15 +31,16 @@ EXPERIMENT_ARGS['transform'] = transforms.Compose([
|
|
31 |
|
32 |
class psp_encoder:
|
33 |
def __init__(self, model_path: str, shape_predictor_path: str):
|
34 |
-
self.ckpt = torch.load(model_path, map_location=
|
35 |
-
self.opts = self.ckpt[
|
36 |
# update the training options
|
37 |
-
self.opts[
|
38 |
self.opts= Namespace(**self.opts)
|
39 |
self.net = pSp(self.opts)
|
40 |
self.net.eval()
|
41 |
self.net.cuda()
|
42 |
self.shape_predictor = dlib.shape_predictor(shape_predictor_path)
|
|
|
43 |
|
44 |
def get_w(self, image_path):
|
45 |
original_image = Image.open(image_path)
|
@@ -47,8 +48,10 @@ class psp_encoder:
|
|
47 |
input_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
48 |
resize_dims = (256, 256)
|
49 |
input_image.resize(resize_dims)
|
50 |
-
img_transforms = EXPERIMENT_ARGS[
|
51 |
transformed_image = img_transforms(input_image)
|
|
|
|
|
52 |
with torch.no_grad():
|
53 |
-
_, latents = self.net(transformed_image.unsqueeze(0).to(
|
54 |
return latents.cpu().numpy()
|
|
|
31 |
|
32 |
class psp_encoder:
|
33 |
def __init__(self, model_path: str, shape_predictor_path: str):
|
34 |
+
self.ckpt = torch.load(model_path, map_location="cpu")
|
35 |
+
self.opts = self.ckpt["opts"]
|
36 |
# update the training options
|
37 |
+
self.opts["checkpoint_path"] = model_path
|
38 |
self.opts= Namespace(**self.opts)
|
39 |
self.net = pSp(self.opts)
|
40 |
self.net.eval()
|
41 |
self.net.cuda()
|
42 |
self.shape_predictor = dlib.shape_predictor(shape_predictor_path)
|
43 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
44 |
|
45 |
def get_w(self, image_path):
|
46 |
original_image = Image.open(image_path)
|
|
|
48 |
input_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
49 |
resize_dims = (256, 256)
|
50 |
input_image.resize(resize_dims)
|
51 |
+
img_transforms = EXPERIMENT_ARGS["transform"]
|
52 |
transformed_image = img_transforms(input_image)
|
53 |
+
|
54 |
+
|
55 |
with torch.no_grad():
|
56 |
+
_, latents = self.net(transformed_image.unsqueeze(0).to(device).float(), randomize_noise=False, return_latents=True)
|
57 |
return latents.cpu().numpy()
|