Upload 5 files
Browse files- app.py +67 -0
- chatbot.py +45 -0
- config.py +22 -0
- database.py +131 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from database import KodeksProcessor
|
3 |
+
from chatbot import Chatbot
|
4 |
+
import os
|
5 |
+
|
6 |
+
def initialize_session_state():
|
7 |
+
if 'chatbot' not in st.session_state:
|
8 |
+
st.session_state.chatbot = Chatbot()
|
9 |
+
if 'messages' not in st.session_state:
|
10 |
+
st.session_state.messages = []
|
11 |
+
|
12 |
+
def main():
|
13 |
+
st.title("Asystent Prawny")
|
14 |
+
|
15 |
+
initialize_session_state()
|
16 |
+
|
17 |
+
# Inicjalizacja bazy danych (jeśli potrzebna)
|
18 |
+
if 'db_initialized' not in st.session_state:
|
19 |
+
with st.spinner("Inicjalizacja bazy danych..."):
|
20 |
+
processor = KodeksProcessor()
|
21 |
+
if not os.path.exists("chroma_db"):
|
22 |
+
processor.process_all_files("data/kodeksy")
|
23 |
+
st.session_state.db_initialized = True
|
24 |
+
|
25 |
+
# Przycisk do czyszczenia historii
|
26 |
+
if st.sidebar.button("Wyczyść historię"):
|
27 |
+
st.session_state.chatbot.clear_history()
|
28 |
+
st.session_state.messages = []
|
29 |
+
st.rerun()
|
30 |
+
|
31 |
+
# Wyświetlenie historii czatu
|
32 |
+
for message in st.session_state.messages:
|
33 |
+
with st.chat_message(message["role"]):
|
34 |
+
st.markdown(message["content"])
|
35 |
+
|
36 |
+
# Input użytkownika
|
37 |
+
if prompt := st.chat_input("Zadaj pytanie dotyczące prawa..."):
|
38 |
+
# Dodaj pytanie użytkownika do historii
|
39 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
40 |
+
|
41 |
+
with st.chat_message("user"):
|
42 |
+
st.markdown(prompt)
|
43 |
+
|
44 |
+
# Wyszukaj odpowiednie fragmenty w bazie
|
45 |
+
processor = KodeksProcessor()
|
46 |
+
relevant_chunks = processor.search(prompt)
|
47 |
+
|
48 |
+
# Wygeneruj odpowiedź
|
49 |
+
with st.chat_message("assistant"):
|
50 |
+
message_placeholder = st.empty()
|
51 |
+
full_response = ""
|
52 |
+
|
53 |
+
context = st.session_state.chatbot.generate_context(
|
54 |
+
[{"text": doc} for doc in relevant_chunks['documents'][0]]
|
55 |
+
)
|
56 |
+
|
57 |
+
for response_chunk in st.session_state.chatbot.get_response(prompt, context):
|
58 |
+
full_response += response_chunk
|
59 |
+
message_placeholder.markdown(full_response + "▌")
|
60 |
+
|
61 |
+
message_placeholder.markdown(full_response)
|
62 |
+
|
63 |
+
# Dodaj odpowiedź asystenta do historii
|
64 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
chatbot.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
from typing import List, Dict
|
3 |
+
from config import HF_TOKEN, MODEL_NAME, SYSTEM_PROMPT
|
4 |
+
|
5 |
+
class Chatbot:
|
6 |
+
def __init__(self):
|
7 |
+
self.client = InferenceClient(api_key=HF_TOKEN)
|
8 |
+
self.conversation_history = [
|
9 |
+
{"role": "system", "content": SYSTEM_PROMPT}
|
10 |
+
]
|
11 |
+
|
12 |
+
def generate_context(self, relevant_chunks: List[Dict]) -> str:
|
13 |
+
context = "Kontekst z przepisów prawnych:\n\n"
|
14 |
+
for chunk in relevant_chunks:
|
15 |
+
context += f"{chunk['text']}\n\n"
|
16 |
+
return context
|
17 |
+
|
18 |
+
def get_response(self, user_input: str, context: str) -> str:
|
19 |
+
messages = self.conversation_history + [
|
20 |
+
{"role": "user", "content": f"Kontekst: {context}\n\nPytanie: {user_input}"}
|
21 |
+
]
|
22 |
+
|
23 |
+
response = ""
|
24 |
+
stream = self.client.chat.completions.create(
|
25 |
+
model=MODEL_NAME,
|
26 |
+
messages=messages,
|
27 |
+
temperature=0.5,
|
28 |
+
max_tokens=8192,
|
29 |
+
top_p=0.7,
|
30 |
+
stream=True
|
31 |
+
)
|
32 |
+
|
33 |
+
for chunk in stream:
|
34 |
+
content = chunk.choices[0].delta.content
|
35 |
+
if content:
|
36 |
+
response += content
|
37 |
+
yield content
|
38 |
+
|
39 |
+
self.conversation_history.append({"role": "user", "content": user_input})
|
40 |
+
self.conversation_history.append({"role": "assistant", "content": response})
|
41 |
+
|
42 |
+
def clear_history(self):
|
43 |
+
self.conversation_history = [
|
44 |
+
{"role": "system", "content": SYSTEM_PROMPT}
|
45 |
+
]
|
config.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
load_dotenv()
|
5 |
+
|
6 |
+
# Konfiguracja API
|
7 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
8 |
+
MODEL_NAME = "Qwen/Qwen2.5-72B-Instruct"
|
9 |
+
|
10 |
+
# Konfiguracja bazy danych
|
11 |
+
CHUNK_SIZE = 1000
|
12 |
+
CHUNK_OVERLAP = 200
|
13 |
+
DATABASE_DIR = "chroma_db"
|
14 |
+
|
15 |
+
# Konfiguracja modelu embeddings
|
16 |
+
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
17 |
+
|
18 |
+
# System prompt
|
19 |
+
SYSTEM_PROMPT = """Jesteś asystentem prawniczym specjalizującym się w polskim prawie.
|
20 |
+
Twoje odpowiedzi opierają się na aktualnych przepisach prawnych.
|
21 |
+
Zawsze cytuj konkretne artykuły i paragrafy z odpowiednich ustaw.
|
22 |
+
"""
|
database.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from typing import List, Dict, Tuple
|
4 |
+
import chromadb
|
5 |
+
from chromadb.utils import embedding_functions
|
6 |
+
from config import CHUNK_SIZE, CHUNK_OVERLAP, DATABASE_DIR, EMBEDDING_MODEL
|
7 |
+
|
8 |
+
class KodeksProcessor:
|
9 |
+
def __init__(self):
|
10 |
+
self.client = chromadb.PersistentClient(path=DATABASE_DIR)
|
11 |
+
try:
|
12 |
+
self.collection = self.client.get_collection("kodeksy")
|
13 |
+
except:
|
14 |
+
self.collection = self.client.create_collection(
|
15 |
+
name="kodeksy",
|
16 |
+
embedding_function=embedding_functions.SentenceTransformerEmbeddingFunction(
|
17 |
+
model_name=EMBEDDING_MODEL
|
18 |
+
)
|
19 |
+
)
|
20 |
+
|
21 |
+
def extract_metadata(self, text: str) -> Dict:
|
22 |
+
metadata = {}
|
23 |
+
dz_u_match = re.search(r'Dz\.U\.(\\d{4})\.(\\d+)\.(\\d+)', text)
|
24 |
+
if dz_u_match:
|
25 |
+
metadata['dz_u'] = f"Dz.U.{dz_u_match.group(1)}.{dz_u_match.group(2)}.{dz_u_match.group(3)}"
|
26 |
+
metadata['rok'] = dz_u_match.group(1)
|
27 |
+
|
28 |
+
nazwa_match = re.search(r'USTAWA\\s+z dnia(.*?)\\n(.*?)\\n', text)
|
29 |
+
if nazwa_match:
|
30 |
+
metadata['data_ustawy'] = nazwa_match.group(1).strip()
|
31 |
+
metadata['nazwa'] = nazwa_match.group(2).strip()
|
32 |
+
|
33 |
+
return metadata
|
34 |
+
|
35 |
+
def split_header_and_content(self, text: str) -> Tuple[str, str]:
|
36 |
+
parts = text.split("USTAWA", 1)
|
37 |
+
if len(parts) > 1:
|
38 |
+
return parts[0], "USTAWA" + parts[1]
|
39 |
+
return "", text
|
40 |
+
|
41 |
+
def process_article(self, article_text: str) -> Dict:
|
42 |
+
art_num_match = re.match(r'Art\\.\\s*(\\d+)', article_text)
|
43 |
+
article_num = art_num_match.group(1) if art_num_match else ""
|
44 |
+
|
45 |
+
paragraphs = re.findall(r'§\\s*(\\d+)[.\\s]+(.*?)(?=§\\s*\\d+|$)', article_text, re.DOTALL)
|
46 |
+
|
47 |
+
if not paragraphs:
|
48 |
+
return {
|
49 |
+
"article_num": article_num,
|
50 |
+
"content": article_text.strip(),
|
51 |
+
"has_paragraphs": False
|
52 |
+
}
|
53 |
+
|
54 |
+
return {
|
55 |
+
"article_num": article_num,
|
56 |
+
"paragraphs": paragraphs,
|
57 |
+
"has_paragraphs": True
|
58 |
+
}
|
59 |
+
|
60 |
+
def split_into_chunks(self, text: str, metadata: Dict) -> List[Dict]:
|
61 |
+
chunks = []
|
62 |
+
chapters = re.split(r'(Rozdział \\d+\\n\\n[^\\n]+)\\n', text)
|
63 |
+
current_chapter = ""
|
64 |
+
|
65 |
+
for i, section in enumerate(chapters):
|
66 |
+
if section.startswith('Rozdział'):
|
67 |
+
current_chapter = section.strip()
|
68 |
+
continue
|
69 |
+
|
70 |
+
articles = re.split(r'(Art\\.\\s*\\d+.*?)(?=Art\\.\\s*\\d+|$)', section)
|
71 |
+
|
72 |
+
for article in articles:
|
73 |
+
if not article.strip():
|
74 |
+
continue
|
75 |
+
|
76 |
+
if article.startswith('Art.'):
|
77 |
+
processed_article = self.process_article(article)
|
78 |
+
|
79 |
+
chunk_metadata = {
|
80 |
+
**metadata,
|
81 |
+
"chapter": current_chapter,
|
82 |
+
"article": processed_article["article_num"]
|
83 |
+
}
|
84 |
+
|
85 |
+
if processed_article["has_paragraphs"]:
|
86 |
+
for par_num, par_content in processed_article["paragraphs"]:
|
87 |
+
chunks.append({
|
88 |
+
"text": f"Art. {processed_article['article_num']} § {par_num}. {par_content}",
|
89 |
+
"metadata": {**chunk_metadata, "paragraph": par_num}
|
90 |
+
})
|
91 |
+
else:
|
92 |
+
chunks.append({
|
93 |
+
"text": processed_article["content"],
|
94 |
+
"metadata": chunk_metadata
|
95 |
+
})
|
96 |
+
|
97 |
+
return chunks
|
98 |
+
|
99 |
+
def process_file(self, filepath: str) -> None:
|
100 |
+
print(f"Przetwarzanie pliku: {filepath}")
|
101 |
+
|
102 |
+
with open(filepath, 'r', encoding='utf-8') as file:
|
103 |
+
content = file.read()
|
104 |
+
|
105 |
+
header, main_content = self.split_header_and_content(content)
|
106 |
+
metadata = self.extract_metadata(main_content)
|
107 |
+
metadata['filename'] = os.path.basename(filepath)
|
108 |
+
|
109 |
+
chunks = self.split_into_chunks(main_content, metadata)
|
110 |
+
|
111 |
+
for i, chunk in enumerate(chunks):
|
112 |
+
self.collection.add(
|
113 |
+
documents=[chunk["text"]],
|
114 |
+
metadatas=[chunk["metadata"]],
|
115 |
+
ids=[f"{metadata['filename']}_{chunk['metadata']['article']}_{i}"]
|
116 |
+
)
|
117 |
+
|
118 |
+
print(f"Dodano {len(chunks)} chunków z pliku {metadata['filename']}")
|
119 |
+
|
120 |
+
def process_all_files(self, directory: str) -> None:
|
121 |
+
for filename in os.listdir(directory):
|
122 |
+
if filename.endswith('.txt'):
|
123 |
+
filepath = os.path.join(directory, filename)
|
124 |
+
self.process_file(filepath)
|
125 |
+
|
126 |
+
def search(self, query: str, n_results: int = 3) -> Dict:
|
127 |
+
results = self.collection.query(
|
128 |
+
query_texts=[query],
|
129 |
+
n_results=n_results
|
130 |
+
)
|
131 |
+
return results
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
chromadb
|
3 |
+
sentence-transformers
|
4 |
+
huggingface-hub
|
5 |
+
python-dotenv
|