Spaces:
Running
Running
adriiita
commited on
Commit
•
c347d26
1
Parent(s):
55bc5a4
Initial commit
Browse files- .gitignore +12 -0
- app.py +112 -0
- core/note_generator.py +29 -0
- core/quiz_generator.py +32 -0
- processors/input_processor.py +74 -0
- requirements.txt +29 -0
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.py[cod]
|
3 |
+
*$py.class
|
4 |
+
.env
|
5 |
+
.venv
|
6 |
+
env/
|
7 |
+
venv/
|
8 |
+
ENV/
|
9 |
+
*.pdf
|
10 |
+
*.docx
|
11 |
+
*.txt
|
12 |
+
!requirements.txt
|
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from processors.input_processor import ContentProcessor
|
3 |
+
from core.note_generator import NoteGenerator
|
4 |
+
from core.quiz_generator import QuizGenerator
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Load environment variables from .env file
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Verify API key is loaded
|
12 |
+
api_key = os.getenv("GROQ_API_KEY")
|
13 |
+
if not api_key:
|
14 |
+
# Try getting from HF secret
|
15 |
+
api_key = os.getenv("GROQ_API_KEY")
|
16 |
+
if not api_key:
|
17 |
+
raise ValueError("GROQ_API_KEY not found in environment variables")
|
18 |
+
|
19 |
+
processor = ContentProcessor()
|
20 |
+
note_gen = NoteGenerator(api_key)
|
21 |
+
quiz_gen = QuizGenerator(api_key)
|
22 |
+
|
23 |
+
def process_pdf(pdf_file, num_questions):
|
24 |
+
if pdf_file is None:
|
25 |
+
return "Please upload a PDF file.", ""
|
26 |
+
|
27 |
+
# Save uploaded file temporarily
|
28 |
+
temp_path = pdf_file.name
|
29 |
+
|
30 |
+
# Process content
|
31 |
+
documents = processor.process_pdf(temp_path)
|
32 |
+
content = "\n".join([doc.page_content for doc in documents])
|
33 |
+
|
34 |
+
# Generate outputs
|
35 |
+
notes = note_gen.generate_notes(content)
|
36 |
+
quiz = quiz_gen.generate_quiz(content, num_questions)
|
37 |
+
|
38 |
+
return notes, quiz
|
39 |
+
|
40 |
+
def process_youtube(youtube_url, num_questions):
|
41 |
+
if not youtube_url:
|
42 |
+
return "Please enter a YouTube URL.", ""
|
43 |
+
|
44 |
+
try:
|
45 |
+
documents = processor.process_youtube(youtube_url)
|
46 |
+
content = "\n".join([doc.page_content for doc in documents])
|
47 |
+
|
48 |
+
notes = note_gen.generate_notes(content)
|
49 |
+
quiz = quiz_gen.generate_quiz(content, num_questions)
|
50 |
+
|
51 |
+
return notes, quiz
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error processing YouTube URL: {str(e)}", ""
|
54 |
+
|
55 |
+
# Create Gradio interface
|
56 |
+
with gr.Blocks(title="AI Teaching Assistant") as demo:
|
57 |
+
gr.Markdown("# AI Teaching Assistant")
|
58 |
+
gr.Markdown("Generate study notes and quizzes from PDFs or YouTube videos")
|
59 |
+
|
60 |
+
with gr.Tabs():
|
61 |
+
with gr.TabItem("PDF Processing"):
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column():
|
64 |
+
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
65 |
+
pdf_num_questions = gr.Slider(
|
66 |
+
minimum=1,
|
67 |
+
maximum=10,
|
68 |
+
value=5,
|
69 |
+
step=1,
|
70 |
+
label="Number of Quiz Questions"
|
71 |
+
)
|
72 |
+
pdf_button = gr.Button("Process PDF")
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
pdf_notes_output = gr.Textbox(label="Generated Notes", lines=10)
|
77 |
+
with gr.Column():
|
78 |
+
pdf_quiz_output = gr.Textbox(label="Generated Quiz", lines=10)
|
79 |
+
|
80 |
+
pdf_button.click(
|
81 |
+
fn=process_pdf,
|
82 |
+
inputs=[pdf_input, pdf_num_questions],
|
83 |
+
outputs=[pdf_notes_output, pdf_quiz_output]
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.TabItem("YouTube Processing"):
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
youtube_input = gr.Textbox(label="YouTube URL")
|
90 |
+
youtube_num_questions = gr.Slider(
|
91 |
+
minimum=1,
|
92 |
+
maximum=10,
|
93 |
+
value=5,
|
94 |
+
step=1,
|
95 |
+
label="Number of Quiz Questions"
|
96 |
+
)
|
97 |
+
youtube_button = gr.Button("Process YouTube Video")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
youtube_notes_output = gr.Textbox(label="Generated Notes", lines=10)
|
102 |
+
with gr.Column():
|
103 |
+
youtube_quiz_output = gr.Textbox(label="Generated Quiz", lines=10)
|
104 |
+
|
105 |
+
youtube_button.click(
|
106 |
+
fn=process_youtube,
|
107 |
+
inputs=[youtube_input, youtube_num_questions],
|
108 |
+
outputs=[youtube_notes_output, youtube_quiz_output]
|
109 |
+
)
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.launch(share=False)
|
core/note_generator.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_groq import ChatGroq
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
|
4 |
+
class NoteGenerator:
|
5 |
+
def __init__(self, api_key):
|
6 |
+
self.llm = ChatGroq(
|
7 |
+
temperature=0.7,
|
8 |
+
groq_api_key=api_key,
|
9 |
+
model_name="llama2-70b-4096" # Groq currently supports Llama2, not Llama3
|
10 |
+
)
|
11 |
+
|
12 |
+
self.note_prompt = PromptTemplate(
|
13 |
+
input_variables=["content"],
|
14 |
+
template="""
|
15 |
+
Create detailed, structured notes from the following content:
|
16 |
+
{content}
|
17 |
+
|
18 |
+
Format the notes with:
|
19 |
+
1. Main topics and subtopics
|
20 |
+
2. Key points and definitions
|
21 |
+
3. Important examples
|
22 |
+
4. Summary
|
23 |
+
"""
|
24 |
+
)
|
25 |
+
|
26 |
+
self.chain = self.note_prompt | self.llm
|
27 |
+
|
28 |
+
def generate_notes(self, content):
|
29 |
+
return self.chain.invoke({"content": content}).content
|
core/quiz_generator.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_groq import ChatGroq
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
|
4 |
+
class QuizGenerator:
|
5 |
+
def __init__(self, api_key):
|
6 |
+
self.llm = ChatGroq(
|
7 |
+
temperature=0.7,
|
8 |
+
groq_api_key=api_key,
|
9 |
+
model_name="llama2-70b-4096" # Groq currently supports Llama2, not Llama3
|
10 |
+
)
|
11 |
+
|
12 |
+
self.quiz_prompt = PromptTemplate(
|
13 |
+
input_variables=["content", "num_questions"],
|
14 |
+
template="""
|
15 |
+
Create {num_questions} multiple-choice questions based on this content:
|
16 |
+
{content}
|
17 |
+
|
18 |
+
For each question:
|
19 |
+
1. Provide the question
|
20 |
+
2. List 4 possible answers
|
21 |
+
3. Indicate the correct answer
|
22 |
+
4. Add a brief explanation
|
23 |
+
"""
|
24 |
+
)
|
25 |
+
|
26 |
+
self.chain = self.quiz_prompt | self.llm
|
27 |
+
|
28 |
+
def generate_quiz(self, content, num_questions=5):
|
29 |
+
return self.chain.invoke({
|
30 |
+
"content": content,
|
31 |
+
"num_questions": num_questions
|
32 |
+
}).content
|
processors/input_processor.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import (
|
2 |
+
PyPDFLoader,
|
3 |
+
UnstructuredWordDocumentLoader,
|
4 |
+
YoutubeLoader
|
5 |
+
)
|
6 |
+
from langchain_community.document_loaders.generic import GenericLoader
|
7 |
+
from langchain_community.document_loaders.parsers.audio import OpenAIWhisperParser
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
+
import re
|
11 |
+
|
12 |
+
class ContentProcessor:
|
13 |
+
def __init__(self):
|
14 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
15 |
+
chunk_size=1000,
|
16 |
+
chunk_overlap=200
|
17 |
+
)
|
18 |
+
|
19 |
+
def process_pdf(self, file_path):
|
20 |
+
loader = PyPDFLoader(file_path)
|
21 |
+
pages = loader.load_and_split(self.text_splitter)
|
22 |
+
return pages
|
23 |
+
|
24 |
+
def process_docx(self, file_path):
|
25 |
+
loader = UnstructuredWordDocumentLoader(file_path)
|
26 |
+
pages = loader.load_and_split(self.text_splitter)
|
27 |
+
return pages
|
28 |
+
|
29 |
+
def process_youtube(self, video_url):
|
30 |
+
# Extract video ID from URL
|
31 |
+
video_id = self._extract_video_id(video_url)
|
32 |
+
if not video_id:
|
33 |
+
raise ValueError("Invalid YouTube URL")
|
34 |
+
|
35 |
+
try:
|
36 |
+
# Get transcript directly using youtube_transcript_api
|
37 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
38 |
+
|
39 |
+
# Combine all transcript pieces
|
40 |
+
full_transcript = " ".join([entry['text'] for entry in transcript_list])
|
41 |
+
|
42 |
+
# Create a document-like structure
|
43 |
+
from langchain.schema import Document
|
44 |
+
doc = Document(
|
45 |
+
page_content=full_transcript,
|
46 |
+
metadata={"source": video_url}
|
47 |
+
)
|
48 |
+
|
49 |
+
# Split the document
|
50 |
+
return self.text_splitter.split_documents([doc])
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
raise Exception(f"Error getting transcript: {str(e)}")
|
54 |
+
|
55 |
+
def _extract_video_id(self, url):
|
56 |
+
# Handle different YouTube URL formats
|
57 |
+
patterns = [
|
58 |
+
r'(?:youtube\.com\/watch\?v=|youtu.be\/|youtube.com\/embed\/)([^&\n?]*)',
|
59 |
+
r'(?:youtube\.com\/shorts\/)([^&\n?]*)'
|
60 |
+
]
|
61 |
+
|
62 |
+
for pattern in patterns:
|
63 |
+
match = re.search(pattern, url)
|
64 |
+
if match:
|
65 |
+
return match.group(1)
|
66 |
+
return None
|
67 |
+
|
68 |
+
def process_audio(self, audio_file):
|
69 |
+
loader = GenericLoader(
|
70 |
+
audio_file,
|
71 |
+
parser=OpenAIWhisperParser()
|
72 |
+
)
|
73 |
+
transcript = loader.load()
|
74 |
+
return self.text_splitter.split_documents(transcript)
|
requirements.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
langchain>=0.1.0
|
3 |
+
langchain-openai>=0.0.2
|
4 |
+
openai>=1.12.0
|
5 |
+
python-dotenv>=1.0.0
|
6 |
+
langchain-community>=0.0.1
|
7 |
+
|
8 |
+
|
9 |
+
# Document processing
|
10 |
+
PyPDF2>=3.0.0
|
11 |
+
unstructured>=0.10.0
|
12 |
+
python-docx>=0.8.11
|
13 |
+
|
14 |
+
# YouTube processing
|
15 |
+
youtube-transcript-api>=0.6.1
|
16 |
+
pytube>=15.0.0
|
17 |
+
|
18 |
+
# Text processing
|
19 |
+
tiktoken>=0.5.1
|
20 |
+
|
21 |
+
# Audio processing (optional, for future audio features)
|
22 |
+
openai-whisper>=20231117
|
23 |
+
|
24 |
+
# Development tools
|
25 |
+
uvicorn>=0.27.0
|
26 |
+
python-multipart>=0.0.9
|
27 |
+
|
28 |
+
# Groq dependencies
|
29 |
+
groq>=0.4.0
|