from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration import requests from PIL import Image processor = Pix2StructProcessor.from_pretrained('google/deplot') model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot') url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt") predictions = model.generate(**inputs, max_new_tokens=512) print(processor.decode(predictions[0], skip_special_tokens=True))