Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
5 |
+
device = "cpu" # "cuda" or "cpu"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
8 |
+
|
9 |
+
def predict(message, history):
|
10 |
+
history.append({"role": "user", "content": message})
|
11 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False)
|
12 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
13 |
+
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
|
14 |
+
decoded = tokenizer.decode(outputs[0])
|
15 |
+
response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
|
16 |
+
return response
|
17 |
+
|
18 |
+
demo = gr.ChatInterface(predict, type="messages")
|
19 |
+
|
20 |
+
demo.launch()
|