File size: 1,982 Bytes
08e633b
 
 
 
0a07ad3
 
 
 
 
 
 
 
 
08e633b
0a07ad3
08e633b
0a07ad3
 
 
ddd3994
 
ede4c6e
ddd3994
 
ede4c6e
08e633b
0a07ad3
 
 
 
 
 
 
 
08e633b
0a07ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import warnings
from pathlib import Path

import gradio as gr
from gradio_imageslider import ImageSlider
import numpy as np
import torch

import fastai
from deoldify import device
from deoldify.device_id import DeviceId
from deoldify.visualize import *
from huggingface_hub import snapshot_download

os.system("pip freeze")
from collections.abc import Sized # Import Sized from collections.abc
warnings.filterwarnings("ignore", category=UserWarning, message=".*?Your .*? set is empty.*?")



# private repo
# from config import HUGGINGFACE_TOKEN as token
token = os.getenv('HUGGINGFACE_TOKEN')
snapshot_folder = snapshot_download(repo_id="afondiel/image-colorizer-deoldify", token=token)

# Set the device to use for computation
# choices:  CPU, GPU0...GPU7
if torch.cuda.is_available():
    device.set(device=DeviceId.GPU0)
else:
    device.set(device=DeviceId.CPU)

# Load the pre-trained model
colorizer = get_image_colorizer(root_folder=Path(snapshot_folder), artistic=True)


def colorizer_fn(input_img, render_factor):
  """
  Colorize grayscale images/photos
  - @param input_img old (grayscale) image 
  - @param render_factor render_factor
  """
  if input_img is not None and input_img !='':
    output_img = colorizer.get_transformed_image(
        path=input_img,
        render_factor=int(render_factor),
        watermarked=watermarked,
        post_process=True,
    )
  else:
    print('Provide an image and try again.')

  return (input_img, output_img) # Return a tuple of old and color Image to be plotted with ImageSlider()

title = "AI Image Colorizer"
description = "Colorize old images with AI"
examples = [["./demo.jpg"],]

demo = gr.Interface(
    fn=colorizer_fn,
    inputs=[gr.Image(type="filepath" , label="Old image"), gr.Slider(0, 40, label="Render Factor", value=10)],
    outputs=ImageSlider(type="pil", label="Old vs Colored image"),
    examples=examples,
    title=title,
    description=description,
)

# Launch the demo
demo.launch()