afondiel commited on
Commit
78e67c7
1 Parent(s): af1a89a

switch to api config

Browse files
Files changed (1) hide show
  1. app.py +27 -29
app.py CHANGED
@@ -11,49 +11,48 @@ import fastai
11
  from deoldify import device
12
  from deoldify.device_id import DeviceId
13
  from deoldify.visualize import *
14
- from huggingface_hub import snapshot_download
 
15
 
16
  os.system("pip freeze")
17
  from collections.abc import Sized # Import Sized from collections.abc
 
18
  warnings.filterwarnings("ignore", category=UserWarning, message=".*?Your .*? set is empty.*?")
19
 
 
 
20
 
21
- # private repo
 
 
22
  token = os.getenv("HF_TOKEN")
23
  repo_id = "afondiel/image-colorizer-deoldify"
24
  repo_type = "space"
25
 
26
  # Download the snapshot from the space repository
27
- snapshot_folder = snapshot_download(repo_id=repo_id, repo_type=repo_type, token=token)
28
-
29
- # Set the device to use for computation
30
- # choices: CPU, GPU0...GPU7
31
- if torch.cuda.is_available():
32
- device.set(device=DeviceId.GPU0)
33
- else:
34
- device.set(device=DeviceId.CPU)
35
 
 
36
  # Load the pre-trained model
37
  _colorizer = get_image_colorizer(root_folder=Path(snapshot_folder), artistic=True)
38
 
39
-
40
  def colorizer_fn(input_img, render_factor):
41
- """
42
- Colorize grayscale images/photos
43
- - @param input_img old (grayscale) image
44
- - @param render_factor render_factor
45
- """
46
- if input_img is not None and input_img !='':
47
- output_img = _colorizer.get_transformed_image(
48
- path=input_img,
49
- render_factor=int(render_factor),
50
- watermarked=watermarked,
51
- post_process=True,
52
- )
53
- else:
54
- print('Provide an image and try again.')
55
 
56
- return (input_img, output_img) # Return a tuple of old and color Image to be plotted with ImageSlider()
57
 
58
  title = "AI Image Colorizer"
59
  description = "Colorize old images with AI"
@@ -61,7 +60,7 @@ examples = [["./demo.jpg"],]
61
 
62
  demo = gr.Interface(
63
  fn=colorizer_fn,
64
- inputs=[gr.Image(type="filepath" , label="Old image"), gr.Slider(0, 40, label="Render Factor", value=10)],
65
  outputs=ImageSlider(type="pil", label="Old vs Colored image"),
66
  examples=examples,
67
  title=title,
@@ -69,6 +68,5 @@ demo = gr.Interface(
69
  )
70
 
71
  # Launch the demo
72
-
73
  if __name__ == "__main__":
74
- demo.launch()
 
11
  from deoldify import device
12
  from deoldify.device_id import DeviceId
13
  from deoldify.visualize import *
14
+ # from huggingface_hub import HfApi, snapshot_download
15
+ from huggingface_hub import HfApi
16
 
17
  os.system("pip freeze")
18
  from collections.abc import Sized # Import Sized from collections.abc
19
+ # Suppress warnings
20
  warnings.filterwarnings("ignore", category=UserWarning, message=".*?Your .*? set is empty.*?")
21
 
22
+ # Initialize Hugging Face API
23
+ api = HfApi()
24
 
25
+ device.set(device=DeviceId.CPU)
26
+
27
+ # Private repo settings
28
  token = os.getenv("HF_TOKEN")
29
  repo_id = "afondiel/image-colorizer-deoldify"
30
  repo_type = "space"
31
 
32
  # Download the snapshot from the space repository
33
+ snapshot_folder = api.snapshot_download(repo_id=repo_id, repo_type=repo_type, token=token)
 
 
 
 
 
 
 
34
 
35
+ device.set(device=DeviceId.GPU0)
36
  # Load the pre-trained model
37
  _colorizer = get_image_colorizer(root_folder=Path(snapshot_folder), artistic=True)
38
 
 
39
  def colorizer_fn(input_img, render_factor):
40
+ """
41
+ Colorize grayscale images/photos
42
+ - @param input_img old (grayscale) image
43
+ - @param render_factor render_factor
44
+ """
45
+ if input_img is not None and input_img != '':
46
+ output_img = _colorizer.get_transformed_image(
47
+ path=input_img,
48
+ render_factor=int(render_factor),
49
+ watermarked=watermarked,
50
+ post_process=True,
51
+ )
52
+ else:
53
+ print('Provide an image and try again.')
54
 
55
+ return (input_img, output_img) # Return a tuple of old and color Image to be plotted with ImageSlider()
56
 
57
  title = "AI Image Colorizer"
58
  description = "Colorize old images with AI"
 
60
 
61
  demo = gr.Interface(
62
  fn=colorizer_fn,
63
+ inputs=[gr.Image(type="filepath", label="Old image"), gr.Slider(0, 40, label="Render Factor", value=10)],
64
  outputs=ImageSlider(type="pil", label="Old vs Colored image"),
65
  examples=examples,
66
  title=title,
 
68
  )
69
 
70
  # Launch the demo
 
71
  if __name__ == "__main__":
72
+ demo.launch()