heatingma commited on
Commit
c3eb514
1 Parent(s): cd5a884

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +26 -43
  2. requirements.txt +3 -3
app.py CHANGED
@@ -1,62 +1,45 @@
1
  import os
2
- import time
3
- import shutil
4
- import pandas as pd
5
  import gradio as gr
6
- from vidfetch import youtube_dl_install_helper, push_to_hf
7
- from panda70m_downloader import download_video_links, download_videos_by_csv
 
 
 
 
 
 
8
 
9
-
10
- SAVE_CSV_DIR = "panda70m_csv"
11
- SAVE_VIDEOS_DIR = "panda70m_videos"
12
 
13
  def handle(
14
  hf_token: str,
15
  filename: str,
16
  ):
17
- try:
18
- import youtube_dl
19
- except:
20
- youtube_dl_install_helper(hf_token=hf_token)
21
- import youtube_dl
 
 
 
 
 
 
 
 
 
 
22
 
23
- download_video_links(hf_token=hf_token, filename=filename, save_dir=SAVE_CSV_DIR)
24
 
25
- # devide .csv to 100 files and download
26
- csv_path = os.path.join(SAVE_CSV_DIR, filename)
27
- data = pd.read_csv(csv_path)
28
- for idx in range(len(data) // 100):
29
- if idx <= 27:
30
- continue;
31
- begin_idx = idx * 100
32
- end_idx = idx * 100 + 100
33
- part_data = data[begin_idx : end_idx]
34
- part_filename = filename.replace(".csv", "") + "_{:06d}_{:06d}.csv".format(begin_idx, end_idx)
35
- targz_filename = part_filename.replace(".csv", ".tar.gz")
36
- part_save_path = os.path.join(SAVE_CSV_DIR, part_filename)
37
- part_data.to_csv(part_save_path)
38
- download_videos_by_csv(
39
- csv_file_path=part_save_path,
40
- save_dir=SAVE_VIDEOS_DIR,
41
- targz_filename=targz_filename
42
- )
43
- push_to_hf(
44
- hf_token=hf_token,
45
- hf_repo_id="OpenVideo/Panda-70M-raw",
46
- file_path=os.path.join(SAVE_VIDEOS_DIR, targz_filename),
47
- path_in_repo=targz_filename
48
- )
49
- shutil.rmtree(SAVE_VIDEOS_DIR)
50
-
51
-
52
  with gr.Blocks() as demo:
53
  gr.Markdown(
54
  '''
55
- Panda70M-Downloader
56
  '''
57
  )
58
  hf_token = gr.Textbox(label="HuggingFace Token")
59
- filename = gr.Textbox(label="csv name")
60
 
61
  with gr.Row():
62
  button = gr.Button("Submit", variant="primary")
 
1
  import os
 
 
 
2
  import gradio as gr
3
+ from openvideo import push_file_to_hf
4
+ try:
5
+ import ml4co_kit
6
+ except:
7
+ os.system("pip install ml4co-kit-0.0.2a1.tar.gz")
8
+ import ml4co_kit
9
+ from ml4co_kit import CVRPPyVRPSolver
10
+ from ml4co_kit import CVRPDataGenerator
11
 
12
+ FILEPATH = "data/cvrp/uniform/cvrp50_uniform.txt"
 
 
13
 
14
  def handle(
15
  hf_token: str,
16
  filename: str,
17
  ):
18
+ solver = CVRPPyVRPSolver(time_limit=10)
19
+ gen = CVRPDataGenerator(
20
+ num_threads=8,
21
+ solver=solver,
22
+ train_samples_num=6400,
23
+ val_samples_num=0,
24
+ test_samples_num=0,
25
+ )
26
+ gen.generate()
27
+ push_file_to_hf(
28
+ hf_token=hf_token,
29
+ hf_repo_id="ML4CO/ML4VRP",
30
+ file_path=FILEPATH,
31
+ path_in_repo=filename
32
+ )
33
 
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  with gr.Blocks() as demo:
36
  gr.Markdown(
37
  '''
38
+ VRP Data Generating
39
  '''
40
  )
41
  hf_token = gr.Textbox(label="HuggingFace Token")
42
+ filename = gr.Textbox(label="txt name")
43
 
44
  with gr.Row():
45
  button = gr.Button("Submit", variant="primary")
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- vidfetch
2
  gradio
3
- pandas
4
- ml4co-kit
 
1
+ openvideo
2
  gradio
3
+ cython
4
+ pyvrp==0.6.3