import json import gradio as gr from flow import full_flow from utils import use_cost_tracker, get_costs, compute_hash with open('schemas.json', 'r') as f: SCHEMAS = json.load(f) def parse_raw_messages(messages_raw): messages_clean = [] messages_agora = [] for message in messages_raw: role = message['role'] message_without_role = dict(message) del message_without_role['role'] messages_agora.append({ 'role': role, 'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```' }) if message.get('status') == 'error': messages_clean.append({ 'role': role, 'content': f"Error: {message['message']}" }) else: messages_clean.append({ 'role': role, 'content': message['body'] }) return messages_clean, messages_agora def main(): with gr.Blocks() as demo: gr.Markdown("# 🏛️Agora Demo") gr.Markdown("[Agora](https://agoraprotocol.org/) is a protocol for efficient communication between heterogeneous agents.") gr.Markdown("In short, with Agora very different agents can exchange messages efficiently, even if they've never interacted before.") gr.Markdown("This demo shows how Agora solves various tasks through a mix of natural language and structured communication.") chosen_task = gr.Dropdown(choices=[ (v['display_name'], k) for k, v in SCHEMAS.items() ], label="Choose a Demo", value="weather_forecast") @gr.render(inputs=[chosen_task]) def render2(chosen_task): gr.Markdown('**Description**: ' + SCHEMAS[chosen_task]["description"]) custom_task = gr.Checkbox(label="Override Demo Parameters") STATE_TRACKER = {} @gr.render(inputs=[chosen_task, custom_task]) def render(chosen_task, custom_task): if STATE_TRACKER.get('chosen_task') != chosen_task: STATE_TRACKER['chosen_task'] = chosen_task for k, v in SCHEMAS[chosen_task]['schema'].items(): if isinstance(v, str): STATE_TRACKER[k] = v else: STATE_TRACKER[k] = json.dumps(v, indent=2) if custom_task: gr.Markdown('#### Custom Demo Parameters') gr.Markdown('You can override the default parameters for the demo. Note: recommended for advanced users only.') gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x})) with gr.Row(equal_height=True): with gr.Column(scale=1): gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x})) with gr.Column(scale=1): gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x})) with gr.Row(equal_height=True): with gr.Column(scale=1): gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x})) with gr.Column(scale=1): gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x})) model_options = [ ('GPT 4o (Camel AI)', 'gpt-4o'), ('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'), ('Claude 3 Sonnet (LangChain)', 'claude-3-5-sonnet-latest'), ('Claude 3 Haiku (LangChain)', 'claude-3-5-haiku-latest'), ('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'), ('Llama3 405B (Sambanova + LangChain)', 'llama3-405b') ] fallback_image = '' images = { 'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png', 'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png', 'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI', 'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI', 'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png', 'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png' } with gr.Row(equal_height=True): with gr.Column(scale=1): alice_model_dd = gr.Dropdown(label="Alice Agent", choices=model_options, value="gpt-4o") with gr.Column(scale=1): bob_model_dd = gr.Dropdown(label="Bob Agent", choices=model_options, value="claude-3-5-sonnet-latest") @gr.render(inputs=[alice_model_dd, bob_model_dd]) def render_with_images(alice_model, bob_model): button = gr.Button('Start', elem_id='start_button') gr.Markdown('## Natural Language') gr.Markdown("When Agora operates without a protocol, it uses the LLM to send/receive messages.") gr.Markdown("This is particularly useful for rare communications, where establishing a protocol would be superfluous.") avatar_images = [images.get(bob_model, fallback_image), images.get(alice_model, fallback_image)] chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images) with gr.Accordion(label="Raw Messages", open=False): chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images) gr.Markdown('## Negotiation') gr.Markdown("If the agents realize that they have been communicating frequently, they negotiate a protocol.") chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images) gr.Markdown('## Protocol') gr.Markdown("The agents now have an unambiguous protocol to follow. This reduces redundant communications and mistakes.") gr.Markdown("The protocol is stored into a Protocol Document and is uniquely identified by its SHA1 hash.") protocol_hash_result = gr.Text(interactive=False, label="Protocol Hash") protocol_result = gr.TextArea(interactive=False, label="Protocol") gr.Markdown('## Implementation') gr.Markdown("If they desire, Alice and Bob can independently implement their side of the protocol as routines (e.g. Python modules).") gr.Markdown("The routines handle the protocol communication without needing to invoke the LLM.") with gr.Row(): with gr.Column(scale=1): alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation") with gr.Column(scale=1): bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation") gr.Markdown('## Structured Communication') gr.Markdown("The agents now communicate using the routines. This is faster, more reliable and cheaper than using the LLM.") structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images) with gr.Accordion(label="Raw Messages", open=False): structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images) gr.Markdown('## Cost') gr.Markdown("Negotiation & implementation have a higher upfront cost, but once they're done, the cost of using a routine is neglible compared to invoking an LLM.") gr.Markdown("This means that, for moderate to high frequency communications, negotiation & implementation with Agora is way cheaper than using natural language alone.") gr.Markdown("Note: negotiated protocols can be reused for similar tasks and shared with other agents, which further reduces costs.") cost_info = gr.State(value=None) #cost_info = gr.TextArea(interactive=False, label="Cost") query_slider = gr.Slider(label="Expected number of queries", minimum=1, maximum=10_000, step=1, value=50, interactive=True) cost_display = gr.Markdown('') gr.Markdown('## Next Steps') gr.Markdown("This demo showcases a simple negotiation-and-implementation flow between two agents.") gr.Markdown("In practice, Agora can be used to build entire networks of agents, with way more complex tasks.") gr.Markdown("Check out our [paper](https://arxiv.org/pdf/2410.11905.pdf) for an example of a network of 100 agents, all interconnected!") gr.Markdown("Also, don't forget us to follow us on [Twitter](https://twitter.com/Agora_Protocol) and join our [Discord](https://discord.gg/MXmfhwQ4FB)!") def render_info(query_count, cost_info): if not cost_info: return '' natural_cost = cost_info['conversation'] * query_count agora_cost = cost_info['negotiation'] + cost_info['programming'] cost_message = '' cost_message += f""" |Operation|Cost (USD)| |---|---| |Natural language conversation|{cost_info["conversation"]:.4f}| |Negotiation|{cost_info["negotiation"]:.4f}| |Programming|{cost_info["programming"]:.4f}| Cost of {query_count} queries: - With natural language: {natural_cost:.4f} USD - With Agora: {agora_cost:.4f} USD """ if natural_cost < agora_cost: factor = agora_cost / natural_cost cost_message += f'#### Natural language is {factor:.2f}x cheaper than Agora.' else: factor = natural_cost / agora_cost cost_message += f'## Agora is {factor:.2f}x cheaper than natural language.' return cost_message cost_info.change(render_info, [query_slider, cost_info], [cost_display]) query_slider.change(render_info, [query_slider, cost_info], [cost_display]) def respond(chosen_task, custom_task, alice_model, bob_model, query_count): with use_cost_tracker(): yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \ None, None, None, None, None, None, None, None, None, None, None if custom_task: schema = dict(STATE_TRACKER) for k, v in schema.items(): if isinstance(v, str): try: schema[k] = json.loads(v) except: pass else: schema = SCHEMAS[chosen_task]["schema"] for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model): nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw) structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw) protocol_hash = compute_hash(protocol) if protocol else None yield gr.update(), gr.update(), gr.update(), None, None, nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, protocol_hash, alice_implementation, bob_implementation #yield from full_flow(schema, alice_model, bob_model) cost_data = get_costs() cost_data_formatted = render_info(query_count, cost_data) yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), cost_data, cost_data_formatted, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() button.click(respond, [chosen_task, custom_task, alice_model_dd, bob_model_dd, query_slider], [button, alice_model_dd, bob_model_dd, cost_info, cost_display, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, protocol_hash_result, alice_implementation, bob_implementation]) demo.launch(share=True) if __name__ == '__main__': main()