Spaces:
Paused
Paused
File size: 9,517 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import tempfile
import unittest
import warnings
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class GenerationConfigTest(unittest.TestCase):
@parameterized.expand([(None,), ("foo.json",)])
def test_save_load_config(self, config_name):
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, config_name=config_name)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.temperature, 0.7)
self.assertEqual(loaded_config.length_penalty, 1.0)
self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k, 50)
self.assertEqual(loaded_config.max_length, 20)
self.assertEqual(loaded_config.max_time, None)
def test_from_model_config(self):
model_config = AutoConfig.from_pretrained("gpt2")
generation_config_from_model = GenerationConfig.from_model_config(model_config)
default_generation_config = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(generation_config_from_model, default_generation_config)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id)
def test_update(self):
generation_config = GenerationConfig()
update_kwargs = {
"max_new_tokens": 1024,
"foo": "bar",
}
update_kwargs_copy = copy.deepcopy(update_kwargs)
unused_kwargs = generation_config.update(**update_kwargs)
# update_kwargs was not modified (no side effects)
self.assertEqual(update_kwargs, update_kwargs_copy)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens, 1024)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(unused_kwargs, {"foo": "bar"})
def test_initialize_new_kwargs(self):
generation_config = GenerationConfig()
generation_config.foo = "bar"
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo, "bar")
generation_config = GenerationConfig.from_model_config(new_config)
assert not hasattr(generation_config, "foo") # no new kwargs should be initialized if from config
def test_kwarg_init(self):
"""Tests that we can overwrite attributes at `from_pretrained` time."""
default_config = GenerationConfig()
self.assertEqual(default_config.temperature, 1.0)
self.assertEqual(default_config.do_sample, False)
self.assertEqual(default_config.num_beams, 1)
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
self.assertEqual(config.temperature, 0.7)
self.assertEqual(config.do_sample, True)
self.assertEqual(config.num_beams, 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0)
self.assertEqual(loaded_config.temperature, 1.0)
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.num_beams, 1) # default value
def test_refuse_to_save(self):
"""Tests that we refuse to save a generation config that fails validation."""
# setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that
# is caught, doesn't save, and raises a warning
config = GenerationConfig()
config.temperature = 0.5
with tempfile.TemporaryDirectory() as tmp_dir:
with warnings.catch_warnings(record=True) as captured_warnings:
config.save_pretrained(tmp_dir)
self.assertEqual(len(captured_warnings), 1)
self.assertTrue("Fix these issues to save the configuration." in str(captured_warnings[0].message))
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is
# caught, doesn't save, and raises a warning
config = GenerationConfig()
config.num_return_sequences = 2
with tempfile.TemporaryDirectory() as tmp_dir:
with warnings.catch_warnings(record=True) as captured_warnings:
config.save_pretrained(tmp_dir)
self.assertEqual(len(captured_warnings), 1)
self.assertTrue("Fix these issues to save the configuration." in str(captured_warnings[0].message))
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# final check: no warnings thrown if it is correct, and file is saved
config = GenerationConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
with warnings.catch_warnings(record=True) as captured_warnings:
config.save_pretrained(tmp_dir)
self.assertEqual(len(captured_warnings), 0)
self.assertTrue(len(os.listdir(tmp_dir)) == 1)
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-generation-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-generation-config-org")
except HTTPError:
pass
def test_push_to_hub(self):
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub("test-generation-config", token=self._token)
new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-generation-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id="test-generation-config", push_to_hub=True, token=self._token)
new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub("valid_org/test-generation-config-org", token=self._token)
new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-generation-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
tmp_dir, repo_id="valid_org/test-generation-config-org", push_to_hub=True, token=self._token
)
new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
|