File size: 14,587 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`.

Usage for an update (as used by the GitHub action `update_metadata`):

```bash
python utils/update_metadata.py --token <token> --commit_sha <commit_sha>
```

Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so
that new pipelines are properly added as metadata (as used in `make repo-consistency`):

```bash
python utils/update_metadata.py --check-only
```
"""
import argparse
import collections
import os
import re
import tempfile
from typing import Dict, List, Tuple

import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder

from transformers.utils import direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
TRANSFORMERS_PATH = "src/transformers"


# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)


# Regexes that match TF/Flax/PT model names.
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")


# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
PIPELINE_TAGS_AND_AUTO_MODELS = [
    ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
    ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
    ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
    ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
    ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
    ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
    ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
    ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
    ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
    (
        "zero-shot-object-detection",
        "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
        "AutoModelForZeroShotObjectDetection",
    ),
    ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
    ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
    ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
    ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
    (
        "table-question-answering",
        "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
        "AutoModelForTableQuestionAnswering",
    ),
    ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
    ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
    (
        "next-sentence-prediction",
        "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
        "AutoModelForNextSentencePrediction",
    ),
    (
        "audio-frame-classification",
        "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
        "AutoModelForAudioFrameClassification",
    ),
    ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
    (
        "document-question-answering",
        "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
        "AutoModelForDocumentQuestionAnswering",
    ),
    (
        "visual-question-answering",
        "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
        "AutoModelForVisualQuestionAnswering",
    ),
    ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
    (
        "zero-shot-image-classification",
        "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
        "AutoModelForZeroShotImageClassification",
    ),
    ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
    ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
    ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
    ("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"),
    ("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"),
]


def camel_case_split(identifier: str) -> List[str]:
    """
    Split a camel-cased name into words.

    Args:
        identifier (`str`): The camel-cased name to parse.

    Returns:
        `List[str]`: The list of words in the identifier (as seprated by capital letters).

    Example:

    ```py
    >>> camel_case_split("CamelCasedClass")
    ["Camel", "Cased", "Class"]
    ```
    """
    # Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
    matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
    return [m.group(0) for m in matches]


def get_frameworks_table() -> pd.DataFrame:
    """
    Generates a dataframe containing the supported auto classes for each model type, using the content of the auto
    modules.
    """
    # Dictionary model names to config.
    config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
    model_prefix_to_model_type = {
        config.replace("Config", ""): model_type for model_type, config in config_maping_names.items()
    }

    # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
    pt_models = collections.defaultdict(bool)
    tf_models = collections.defaultdict(bool)
    flax_models = collections.defaultdict(bool)

    # Let's lookup through all transformers object (once) and find if models are supported by a given backend.
    for attr_name in dir(transformers_module):
        lookup_dict = None
        if _re_tf_models.match(attr_name) is not None:
            lookup_dict = tf_models
            attr_name = _re_tf_models.match(attr_name).groups()[0]
        elif _re_flax_models.match(attr_name) is not None:
            lookup_dict = flax_models
            attr_name = _re_flax_models.match(attr_name).groups()[0]
        elif _re_pt_models.match(attr_name) is not None:
            lookup_dict = pt_models
            attr_name = _re_pt_models.match(attr_name).groups()[0]

        if lookup_dict is not None:
            while len(attr_name) > 0:
                if attr_name in model_prefix_to_model_type:
                    lookup_dict[model_prefix_to_model_type[attr_name]] = True
                    break
                # Try again after removing the last word in the name
                attr_name = "".join(camel_case_split(attr_name)[:-1])

    all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys()))
    all_models = list(all_models)
    all_models.sort()

    data = {"model_type": all_models}
    data["pytorch"] = [pt_models[t] for t in all_models]
    data["tensorflow"] = [tf_models[t] for t in all_models]
    data["flax"] = [flax_models[t] for t in all_models]

    # Now let's find the right processing class for each model. In order we check if there is a Processor, then a
    # Tokenizer, then a FeatureExtractor, then an ImageProcessor
    processors = {}
    for t in all_models:
        if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
            processors[t] = "AutoProcessor"
        elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
            processors[t] = "AutoTokenizer"
        elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
            processors[t] = "AutoFeatureExtractor"
        elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES:
            processors[t] = "AutoFeatureExtractor"
        else:
            # Default to AutoTokenizer if a model has nothing, for backward compatibility.
            processors[t] = "AutoTokenizer"

    data["processor"] = [processors[t] for t in all_models]

    return pd.DataFrame(data)


def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]:
    """
    Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore.

    Args:
        table (`Dict[str, Tuple[str, str]]`):
            The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with
            which they should be used.

    Returns:
        `Dict[str, Tuple[str, str]]`: The updated table in the same format.
    """
    auto_modules = [
        transformers_module.models.auto.modeling_auto,
        transformers_module.models.auto.modeling_tf_auto,
        transformers_module.models.auto.modeling_flax_auto,
    ]
    for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
        model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"]
        auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"]
        # Loop through all three frameworks
        for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
            # The type of pipeline may not exist in this framework
            if not hasattr(module, mapping):
                continue
            # First extract all model_names
            model_names = []
            for name in getattr(module, mapping).values():
                if isinstance(name, str):
                    model_names.append(name)
                else:
                    model_names.extend(list(name))

            # Add pipeline tag and auto model class for those models
            table.update({model_name: (pipeline_tag, cls) for model_name in model_names})

    return table


def update_metadata(token: str, commit_sha: str):
    """
    Update the metadata for the Transformers repo in `huggingface/transformers-metadata`.

    Args:
        token (`str`): A valid token giving write access to `huggingface/transformers-metadata`.
        commit_sha (`str`): The commit SHA on Transformers corresponding to this update.
    """
    frameworks_table = get_frameworks_table()
    frameworks_dataset = Dataset.from_pandas(frameworks_table)

    resolved_tags_file = hf_hub_download(
        "huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token
    )
    tags_dataset = Dataset.from_json(resolved_tags_file)
    table = {
        tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
        for i in range(len(tags_dataset))
    }
    table = update_pipeline_and_auto_class_table(table)

    # Sort the model classes to avoid some nondeterministic updates to create false update commits.
    model_classes = sorted(table.keys())
    tags_table = pd.DataFrame(
        {
            "model_class": model_classes,
            "pipeline_tag": [table[m][0] for m in model_classes],
            "auto_class": [table[m][1] for m in model_classes],
        }
    )
    tags_dataset = Dataset.from_pandas(tags_table)

    with tempfile.TemporaryDirectory() as tmp_dir:
        frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json"))
        tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json"))

        if commit_sha is not None:
            commit_message = (
                f"Update with commit {commit_sha}\n\nSee: "
                f"https://github.com/huggingface/transformers/commit/{commit_sha}"
            )
        else:
            commit_message = "Update"

        upload_folder(
            repo_id="huggingface/transformers-metadata",
            folder_path=tmp_dir,
            repo_type="dataset",
            token=token,
            commit_message=commit_message,
        )


def check_pipeline_tags():
    """
    Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script.
    """
    in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
    pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS
    missing = []
    for key in pipeline_tasks:
        if key not in in_table:
            model = pipeline_tasks[key]["pt"]
            if isinstance(model, (list, tuple)):
                model = model[0]
            model = model.__name__
            if model not in in_table.values():
                missing.append(key)

    if len(missing) > 0:
        msg = ", ".join(missing)
        raise ValueError(
            "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside "
            f"`utils/update_metadata.py`: {msg}. Please add them!"
        )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
    parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
    parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
    args = parser.parse_args()

    if args.check_only:
        check_pipeline_tags()
    else:
        update_metadata(args.token, args.commit_sha)