voice_clone_v4 / transformers /tests /test_feature_extraction_utils.py
ahassoun's picture
Upload 3018 files
ee6e328
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = Wav2Vec2FeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
)
@is_staging_test
class FeatureExtractorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-feature-extractor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
except HTTPError:
pass
def test_push_to_hub(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_in_organization(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_dynamic_feature_extractor(self):
CustomFeatureExtractor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
)
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")