File size: 4,283 Bytes
2faefa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from typing import Any, List, Callable
import cv2
import insightface
import threading

import DeepFakeAI.globals
import DeepFakeAI.processors.frame.core as frame_processors
from DeepFakeAI import wording
from DeepFakeAI.core import update_status
from DeepFakeAI.face_analyser import get_one_face, get_many_faces, find_similar_faces
from DeepFakeAI.face_reference import get_face_reference, set_face_reference
from DeepFakeAI.typing import Face, Frame
from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video

FRAME_PROCESSOR = None
THREAD_LOCK = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'


def get_frame_processor() -> Any:
	global FRAME_PROCESSOR

	with THREAD_LOCK:
		if FRAME_PROCESSOR is None:
			model_path = resolve_relative_path('../.assets/models/inswapper_128.onnx')
			FRAME_PROCESSOR = insightface.model_zoo.get_model(model_path, providers = DeepFakeAI.globals.execution_providers)
	return FRAME_PROCESSOR


def clear_frame_processor() -> None:
	global FRAME_PROCESSOR

	FRAME_PROCESSOR = None


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx'])
	return True


def pre_process() -> bool:
	if not is_image(DeepFakeAI.globals.source_path):
		update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
		return False
	elif not get_one_face(cv2.imread(DeepFakeAI.globals.source_path)):
		update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
		return False
	if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path):
		update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
		return False
	return True


def post_process() -> None:
	clear_frame_processor()


def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
	return get_frame_processor().get(temp_frame, target_face, source_face, paste_back = True)


def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
	if 'reference' in DeepFakeAI.globals.face_recognition:
		similar_faces = find_similar_faces(temp_frame, reference_face, DeepFakeAI.globals.reference_face_distance)
		if similar_faces:
			for similar_face in similar_faces:
				temp_frame = swap_face(source_face, similar_face, temp_frame)
	if 'many' in DeepFakeAI.globals.face_recognition:
		many_faces = get_many_faces(temp_frame)
		if many_faces:
			for target_face in many_faces:
				temp_frame = swap_face(source_face, target_face, temp_frame)
	return temp_frame


def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
	source_face = get_one_face(cv2.imread(source_path))
	reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None
	for temp_frame_path in temp_frame_paths:
		temp_frame = cv2.imread(temp_frame_path)
		result_frame = process_frame(source_face, reference_face, temp_frame)
		cv2.imwrite(temp_frame_path, result_frame)
		if update:
			update()


def process_image(source_path : str, target_path : str, output_path : str) -> None:
	source_face = get_one_face(cv2.imread(source_path))
	target_frame = cv2.imread(target_path)
	reference_face = get_one_face(target_frame, DeepFakeAI.globals.reference_face_position) if 'reference' in DeepFakeAI.globals.face_recognition else None
	result_frame = process_frame(source_face, reference_face, target_frame)
	cv2.imwrite(output_path, result_frame)


def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
	conditional_set_face_reference(temp_frame_paths)
	frame_processors.process_video(source_path, temp_frame_paths, process_frames)


def conditional_set_face_reference(temp_frame_paths : List[str]) -> None:
	if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference():
		reference_frame = cv2.imread(temp_frame_paths[DeepFakeAI.globals.reference_frame_number])
		reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position)
		set_face_reference(reference_face)