File size: 2,432 Bytes
2faefa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from typing import Any, List, Callable
import cv2
import threading
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import DeepFakeAI.processors.frame.core as frame_processors
from DeepFakeAI.typing import Frame, Face
from DeepFakeAI.utilities import conditional_download, resolve_relative_path
FRAME_PROCESSOR = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
model_path = resolve_relative_path('../.assets/models/RealESRGAN_x4plus.pth')
FRAME_PROCESSOR = RealESRGANer(
model_path = model_path,
model = RRDBNet(
num_in_ch = 3,
num_out_ch = 3,
num_feat = 64,
num_block = 23,
num_grow_ch = 32,
scale = 4
),
device = frame_processors.get_device(),
tile = 512,
tile_pad = 32,
pre_pad = 0,
scale = 4
)
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/RealESRGAN_x4plus.pth'])
return True
def pre_process() -> bool:
return True
def post_process() -> None:
clear_frame_processor()
def enhance_frame(temp_frame : Frame) -> Frame:
with THREAD_SEMAPHORE:
temp_frame, _ = get_frame_processor().enhance(temp_frame, outscale = 1)
return temp_frame
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
return enhance_frame(temp_frame)
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result_frame = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
if update:
update()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
target_frame = cv2.imread(target_path)
result = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
frame_processors.process_video(None, temp_frame_paths, process_frames)
|