|
import threading |
|
from typing import Any, Optional, List |
|
import insightface |
|
import numpy |
|
|
|
import DeepFakeAI.globals |
|
from DeepFakeAI.typing import Frame, Face, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender |
|
|
|
FACE_ANALYSER = None |
|
THREAD_LOCK = threading.Lock() |
|
|
|
|
|
def get_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
with THREAD_LOCK: |
|
if FACE_ANALYSER is None: |
|
FACE_ANALYSER = insightface.app.FaceAnalysis(name = 'buffalo_l', providers = DeepFakeAI.globals.execution_providers) |
|
FACE_ANALYSER.prepare(ctx_id = 0) |
|
return FACE_ANALYSER |
|
|
|
|
|
def clear_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
FACE_ANALYSER = None |
|
|
|
|
|
def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]: |
|
many_faces = get_many_faces(frame) |
|
if many_faces: |
|
try: |
|
return many_faces[position] |
|
except IndexError: |
|
return many_faces[-1] |
|
return None |
|
|
|
|
|
def get_many_faces(frame : Frame) -> List[Face]: |
|
try: |
|
faces = get_face_analyser().get(frame) |
|
if DeepFakeAI.globals.face_analyser_direction: |
|
faces = sort_by_direction(faces, DeepFakeAI.globals.face_analyser_direction) |
|
if DeepFakeAI.globals.face_analyser_age: |
|
faces = filter_by_age(faces, DeepFakeAI.globals.face_analyser_age) |
|
if DeepFakeAI.globals.face_analyser_gender: |
|
faces = filter_by_gender(faces, DeepFakeAI.globals.face_analyser_gender) |
|
return faces |
|
except (AttributeError, ValueError): |
|
return [] |
|
|
|
|
|
def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]: |
|
many_faces = get_many_faces(frame) |
|
similar_faces = [] |
|
if many_faces: |
|
for face in many_faces: |
|
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): |
|
current_face_distance = numpy.sum(numpy.square(face.normed_embedding - reference_face.normed_embedding)) |
|
if current_face_distance < face_distance: |
|
similar_faces.append(face) |
|
return similar_faces |
|
|
|
|
|
def sort_by_direction(faces : List[Face], direction : FaceAnalyserDirection) -> List[Face]: |
|
if direction == 'left-right': |
|
return sorted(faces, key = lambda face: face['bbox'][0]) |
|
if direction == 'right-left': |
|
return sorted(faces, key = lambda face: face['bbox'][0], reverse = True) |
|
if direction == 'top-bottom': |
|
return sorted(faces, key = lambda face: face['bbox'][1]) |
|
if direction == 'bottom-top': |
|
return sorted(faces, key = lambda face: face['bbox'][1], reverse = True) |
|
if direction == 'small-large': |
|
return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) |
|
if direction == 'large-small': |
|
return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse = True) |
|
return faces |
|
|
|
|
|
def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]: |
|
filter_faces = [] |
|
for face in faces: |
|
if face['age'] < 13 and age == 'child': |
|
filter_faces.append(face) |
|
elif face['age'] < 19 and age == 'teen': |
|
filter_faces.append(face) |
|
elif face['age'] < 60 and age == 'adult': |
|
filter_faces.append(face) |
|
elif face['age'] > 59 and age == 'senior': |
|
filter_faces.append(face) |
|
return filter_faces |
|
|
|
|
|
def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]: |
|
filter_faces = [] |
|
for face in faces: |
|
if face['gender'] == 1 and gender == 'male': |
|
filter_faces.append(face) |
|
if face['gender'] == 0 and gender == 'female': |
|
filter_faces.append(face) |
|
return filter_faces |
|
|
|
|
|
def get_faces_total(frame : Frame) -> int: |
|
return len(get_many_faces(frame)) |
|
|