import os os.system('pip install streamlit transformers torch') import streamlit as st from transformers import BartTokenizer, BartForConditionalGeneration # Load the model and tokenizer model_name = 'ahmadrocks/facebook_bart_base_new' tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) def summarize_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") summary_ids = model.generate( inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary st.title("Text Summarization with Fine-Tuned Model") st.write("Enter text to generate a summary using the fine-tuned summarization model.") text = st.text_area("Input Text", height=200) if st.button("Summarize"): if text: with st.spinner("Summarizing..."): summary = summarize_text(text) st.success("Summary Generated") st.write(summary) else: st.warning("Please enter some text to summarize.") if _name_ == "_main_": st.set_option('deprecation.showfileUploaderEncoding', False) st.markdown( """ """, unsafe_allow_html=True )