File size: 5,789 Bytes
36f0d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import requests
import datadog_api_client
from PIL import Image

def check_liveness(frame):
    url = "http://127.0.0.1:8080/check_liveness"
    file = {'file': open(frame, 'rb')}

    r = requests.post(url=url, files=file)
    result = r.json().get('face_state').get('result')

    html = None
    faces = None
    if r.json().get('face_state').get('is_not_front') is not None:
        liveness_score = r.json().get('face_state').get('liveness_score')
        eye_closed = r.json().get('face_state').get('eye_closed')
        is_boundary_face = r.json().get('face_state').get('is_boundary_face')
        is_not_front = r.json().get('face_state').get('is_not_front')
        is_occluded = r.json().get('face_state').get('is_occluded')
        is_small = r.json().get('face_state').get('is_small')
        luminance = r.json().get('face_state').get('luminance')
        mouth_opened = r.json().get('face_state').get('mouth_opened')
        quality = r.json().get('face_state').get('quality')

        html = ("<table>"
                    "<tr>"
                        "<th>Face State</th>"
                        "<th>Value</th>"
                    "</tr>"
                    "<tr>"
                        "<td>Result</td>"
                        "<td>{result}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Liveness Score</td>"
                        "<td>{liveness_score}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Quality</td>"
                        "<td>{quality}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Luminance</td>"
                        "<td>{luminance}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Is Small</td>"
                        "<td>{is_small}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Is Boundary</td>"
                        "<td>{is_boundary_face}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Is Not Front</td>"
                        "<td>{is_not_front}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Face Occluded</td>"
                        "<td>{is_occluded}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Eye Closed</td>"
                        "<td>{eye_closed}</td>"
                    "</tr>"
                    "<tr>"
                        "<td>Mouth Opened</td>"
                        "<td>{mouth_opened}</td>"
                    "</tr>"
                    "</table>".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face,
                                      is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result))

    else:
        html = ("<table>"
            "<tr>"
                "<th>Face State</th>"
                "<th>Value</th>"
            "</tr>"
            "<tr>"
                "<td>Result</td>"
                "<td>{result}</td>"
            "</tr>"
            "</table>".format(result=result))

    try:
        image = Image.open(frame)        

        for face in r.json().get('faces'):
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image.width:
                x2 = image.width - 1
            if y2 >= image.height:
                y2 = image.height - 1

            face_image = image.crop((x1, y1, x2, y2))
            face_image_ratio = face_image.width / float(face_image.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face_image = face_image.resize((int(resized_w), int(resized_h)))

            if faces is None:
                faces = face_image
            else:
                new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))

                new_image.paste(faces,(0,0))
                new_image.paste(face_image,(faces.width + 10, 0))
                faces = new_image.copy()
    except:
        pass

    return [faces, html]

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # KBY-AI
    We offer SDKs for Face Recognition, Face Liveness Detection(Face Anti-Spoofing), and ID Card Recognition.<br/>
    Besides that, we can provide several AI models and development services in machine learning.

    ## Simple Installation & Simple API
    ```
    sudo docker pull kbyai/face-liveness-detection:latest
    sudo docker run -e LICENSE="xxxxx" -p 8080:8080 -p 9000:9000 kbyai/face-liveness-detection:latest
    ```      
    ## KYC Verification Demo
    https://github.com/kby-ai/KYC-Verification    
    """
    )
    with gr.TabItem("Face Liveness Detection"):
        with gr.Row():
            with gr.Column():
                live_image_input = gr.Image(type='filepath')
                gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'], 
                            inputs=live_image_input)
                check_liveness_button = gr.Button("Check Liveness")
            with gr.Column():
                liveness_face_output = gr.Image(type="pil").style(height=150)
                livness_result_output = gr.HTML()
        
        check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output])

demo.launch(server_name="0.0.0.0", server_port=9000)