import gradio as gr
import requests
import datadog_api_client
from PIL import Image
def check_liveness(frame):
url = "http://127.0.0.1:8080/check_liveness"
file = {'file': open(frame, 'rb')}
r = requests.post(url=url, files=file)
result = r.json().get('face_state').get('result')
html = None
faces = None
if r.json().get('face_state').get('is_not_front') is not None:
liveness_score = r.json().get('face_state').get('liveness_score')
eye_closed = r.json().get('face_state').get('eye_closed')
is_boundary_face = r.json().get('face_state').get('is_boundary_face')
is_not_front = r.json().get('face_state').get('is_not_front')
is_occluded = r.json().get('face_state').get('is_occluded')
is_small = r.json().get('face_state').get('is_small')
luminance = r.json().get('face_state').get('luminance')
mouth_opened = r.json().get('face_state').get('mouth_opened')
quality = r.json().get('face_state').get('quality')
html = ("
"
""
"Face State | "
"Value | "
"
"
""
"Result | "
"{result} | "
"
"
""
"Liveness Score | "
"{liveness_score} | "
"
"
""
"Quality | "
"{quality} | "
"
"
""
"Luminance | "
"{luminance} | "
"
"
""
"Is Small | "
"{is_small} | "
"
"
""
"Is Boundary | "
"{is_boundary_face} | "
"
"
""
"Is Not Front | "
"{is_not_front} | "
"
"
""
"Face Occluded | "
"{is_occluded} | "
"
"
""
"Eye Closed | "
"{eye_closed} | "
"
"
""
"Mouth Opened | "
"{mouth_opened} | "
"
"
"
".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face,
is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result))
else:
html = (""
""
"Face State | "
"Value | "
"
"
""
"Result | "
"{result} | "
"
"
"
".format(result=result))
try:
image = Image.open(frame)
for face in r.json().get('faces'):
x1 = face.get('x1')
y1 = face.get('y1')
x2 = face.get('x2')
y2 = face.get('y2')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
if faces is None:
faces = face_image
else:
new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))
new_image.paste(faces,(0,0))
new_image.paste(face_image,(faces.width + 10, 0))
faces = new_image.copy()
except:
pass
return [faces, html]
with gr.Blocks() as demo:
gr.Markdown(
"""
# KBY-AI
We offer SDKs for Face Recognition, Face Liveness Detection(Face Anti-Spoofing), and ID Card Recognition.
Besides that, we can provide several AI models and development services in machine learning.
## Simple Installation & Simple API
```
sudo docker pull kbyai/face-liveness-detection:latest
sudo docker run -e LICENSE="xxxxx" -p 8080:8080 -p 9000:9000 kbyai/face-liveness-detection:latest
```
## KYC Verification Demo
https://github.com/kby-ai/KYC-Verification
"""
)
with gr.TabItem("Face Liveness Detection"):
with gr.Row():
with gr.Column():
live_image_input = gr.Image(type='filepath')
gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'],
inputs=live_image_input)
check_liveness_button = gr.Button("Check Liveness")
with gr.Column():
liveness_face_output = gr.Image(type="pil").style(height=150)
livness_result_output = gr.HTML()
check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output])
demo.launch(server_name="0.0.0.0", server_port=9000)